
METABOLISM AND METABOLIC DISEASE

Ser and

Thomas G. Brock, Ph.D.

Introduction to

Of all of the cephalopods, the nautilus (our current cover creature) perhaps suffers most from lack of face recognition. Sure, many are familiar with the iconic shell, with its colorful patterning and intriguing spiral. However, squids and octopi are much better known, having landed major roles in movies, cartoons, and menus. Still, the curious scientist would do well to ponder the eye of the nautilus, peeking out from under its mantle, and the collection of tentacles organized around the mouth. These features emerged, along with a wide variety of diverse lifeforms, during the Cambrian explosion, some 500 million years ago. While many organisms either evolved or went extinct, the nautilus has proven to have a truly exceptional body plan that has prospered with little need for modification to this day.

The nautilus may be the perfect poster creature for metabolism, representing millions of years of successful health with no evidence of obesity, diabetes, or hypertension. Compare that track record with the checkered past of certain hominids. Homo sapiens, the most recent of a series of Homo species that can be traced back to the Pliocene some 2 million years ago, is also the only Homo species that has not yet become extinct. Today, over 75% of American adults over 20 years of age are overweight or obese, while some 20% of children aged 6-19 have a BMI-for-age at the 95th percentile or higher. Among American adults, obese individuals, comprising greater than 40% of the total population, surpass the number of overweight adults, at around 34%. As obesity increases the likelihood of developing heart disease, type 2 diabetes, and a host of other diseases, the condition represents one of the leading preventable causes of morbidity and mortality.

Homo Sapiens paradoxically finds itself metabolically maladapted for a nutritional environment that is largely of its own making - but there is hope through research. Cayman's goal is to make your research possible. In this catalog, you will find the best reagents, assay kits, proteins, and antibodies for research related to metabolism. Many more products can be found on our website (caymanchem.com). We are constantly expanding our product line, so feel free to register for new product emails that are tailored to your specific area of interest. We want to help you with your next great discovery!

Metabolism and Metabolic Disease

Warranty and Limitation of Remedy

Cayman Chemical Company makes no warranty or quarantee of any kind, whether written or oral, expressed or implied, including without limitation, any warranty of fitness for a particular purpose, noninfringement, suitability, and merchantability, which extends beyond the description of the chemicals hereof. Cayman warrants only to the original customer that the material will meet our specifications at the time of delivery.

Cayman will carry out its delivery obligations with due care and skill. Thus, in no event will Cayman what any obligation or liability, whether in tort (including negligence) or in contract, for any direct, indirect, incidental, or consequential damages, even if Cayman his informed about their possible existence. This limitation of liability does not apply in the case of intentional acts or negligence of Cayman, its directors or its employees. Buyer's exclusive remedy and Caymar's sole liability hereunder shall be limited to a <u>refund</u> of the purchase price, or at Cayman's option, the <u>replacement</u>, at no cost o Buyer, of all material that does not meet our specifications.

Solid refund or replacement is conditioned on Buyer giving written notice to Cayman within thirty (30) days after arrival of the material at its destination. Failure of Buyer to give said notice within thirty (30) days shall constitute a waiver by Buyer of all claims hereunder with respect to said material. Neither party shall be liable to the other in any manner for the failure of or delay in the fulfillment of all or part of their obligations, resulting from causes or circumstances beyond their reasonable control including, but not limited to, floods, fires, hurricanes, tornadoes, earthquakes, other natural calamities and extraordinary weather, insurrections, wars, acts of terrorism, riots, embargoes, governmental refusals to issue approval for export, other governmental orders or estrictions, shortages of shipping vehicles, delays in transportation, inability to obtain supplies and materials, strikes, and lockouts.

Table of Contents

Targeting PPAR β/δ For Weight Loss: **Exercise in a Pill**

- 6 Antibodies
- **13** Biochemicals
- Weight Loss: A New Star is Irisin
- 27 Kits

30 Sirtuins, to your health

The PPAR α Story

49 Proteins

52 Index

Ordering Information

Orders are accepted by telephone, fax, mail, e-mail, or via the Cayman Chemical website. We will accept telephone orders Monday through Friday from 8 AM to 6 PM EST. All orders received by 1 PM EST will be shipped the same day if stock is available (Monday through Thursday only). Confirming purchase orders must be clearly marked as such to avoid possibility of duplication.

Domestic Shipments

In most instances we ship FedEx Standard Overnight Delivery (not available to all locations), with delivery by 3:30 PM of the next business day. Product availability may vary. Local delivery is available for the Ann Arbor area only. Other shipping options will be considered upon request, but can be granted only under conditions that will ensure the quality of the product. Freight is prepaid and added to the invoice. Please inquire at the time of order for an estimate of the freight charges. If you wish us to ship collect, please supply a valid account number when ordering. Please address all orders to:

Cayman Chemical Company	
1180 E. Ellsworth Road	
Ann Arbor, MI 48108 USA	
Phone: (734) 971-3335	

Toll-free Phone: (800) 364-9897 Fax: (734) 971-3640 E-mail: custserv@cavmanchem.com www.cavmanchem.com

Include the following information with your order:

1. Catalog number, description, size, and guantity desired.

- 2. Complete shipping address. (Delivery is not available to post office box numbers.) 3. A complete billing address.
- 4. A purchase order number or major credit card (Visa, MasterCard, or American Express), account number, and expiration date. 5. Name of the end user.

Terms

- 1. U.S. funds only, drawn on a U.S. bank.
- 2. Net 30 days.
- 3. F.O.B. Ann Arbor, Michigan, U.S.A.
- 4. Bank fees and wire transfer fees are not to be deducted from the invoice amount.

Returns

Products cannot be returned without prior authorization from Cayman Chemical Company. Please contact our Customer Service Department for return shipping instructions. Custom orders and radioactive material cannot be accepted for return credit if due to a customer's error.

Technical Assistance

Technical assistance is available from 8 AM to 5:30 PM EST. If inquiring about a purchased product, please provide the catalog number, lot number, and date of purchase to our technical staff so they may answer your questions quickly. Technical assistance may be reached toll free at 888-526-5351, via e-mail at techserv@caymanchem.com, or on the web at www.caymanchem.com/techserv.

Use of Research Products

The products in this catalog are not for human or veterinary disease diagnosis or therapeutic drug use. They should be used only by technically qualified individuals or those under their direct supervision. Any individual working directly with these products should have free access to the applicable Material Safety Data Sheet (MSDS) and should read and understand it completely prior to use. Please contact our Customer Service Department or visit the specific product page on our website if you require additional copies of any MSDS.

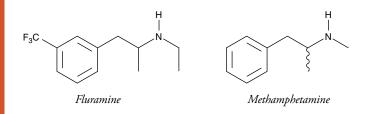
Patent Disclaimer

The end-user assumes full responsibility for appropriate licensing and/or non-infringement for any proprietary claim or patent.

NOTE: For Laboratory Research Use Only. Not for human or veterinary diagnostic or therapeutic use.

vol. 16

1etabolism anc etabolic Disease



ACAT	
	Acyl-coenzyme A:Cholesterol Acyltransferase
AEA	Arachidonoyl Ethanolamide;
	Anandamide
A-FABP	Adipocyte Fatty Acid Binding Protein
АМРК	AMP-activated Protein Kinase
aP2	Adipocyte Protein 2
СВ	Cannabinoid
CDCA	Chenodeoxycholic Acid
сох	Cyclooxygenase
DHA	Docosahexaenoic Acid
EC ₅₀	Effective Concentration
ED ₅₀	Effective Dose
EIA	Enzyme Immunoassay
ELISA	Enzyme-linked Immunosorbent Assay
EPA	Eicosapentaenoic Acid
FAS	Fatty Acid Synthase
FFA	Free Fatty Acid
FITC	Fluorescein Isothiocyanate
FP	Prostaglandin F Receptor
FXR	Farnesoid X Receptor
GPCR	G Protein-Coupled Receptor
HDL	High-Density Lipoprotein
ніх	Human Immunodeficiency Virus
HMG-CoA	3-Hydroxy-3-methylglutaryl- coenzyme A
ICC	Immunocytochemistry
ІНС	Immunohistochemistry
IP	Immunoprecipitation
K _d	Dissociation Constant
K	Dissociation Constant
LDL	Low-Density Lipoprotein
LO	Lipoxygenase
LXR	Liver X Receptor
NAD ⁺	
nne	Nicotinamide Adenine Di- nucleotide
Nampt	
	nucleotide Nicotinamide Phosphoribosyl-
Nampt	nucleotide Nicotinamide Phosphoribosyl- transferase
Nampt OEA	nucleotide Nicotinamide Phosphoribosyl- transferase Oleoyl Ethanolamide
Nampt OEA PG	nucleotide Nicotinamide Phosphoribosyl- transferase Oleoyl Ethanolamide Prostaglandin
Nampt OEA PG PGRN	nucleotide Nicotinamide Phosphoribosyl- transferase Oleoyl Ethanolamide Prostaglandin Progranulin Peroxisome Proliferator-activated
Nampt OEA PG PGRN PPAR	nucleotide Nicotinamide Phosphoribosyl- transferase Oleoyl Ethanolamide Prostaglandin Progranulin Peroxisome Proliferator-activated Receptor
Nampt OEA PG PGRN PPAR SEAP	nucleotide Nicotinamide Phosphoribosyl- transferase Oleoyl Ethanolamide Prostaglandin Progranulin Peroxisome Proliferator-activated Receptor Secreted Alkaline Phosphatase
Nampt OEA PG PGRN PPAR SEAP SIRT	nucleotide Nicotinamide Phosphoribosyl- transferase Oleoyl Ethanolamide Prostaglandin Progranulin Peroxisome Proliferator-activated Receptor Secreted Alkaline Phosphatase Silent Information Regulator Sterol Regulatory Element-
Nampt OEA PG PGRN PPAR SEAP SIRT SREBP	nucleotide Nicotinamide Phosphoribosyl- transferase Oleoyl Ethanolamide Prostaglandin Progranulin Peroxisome Proliferator-activated Receptor Secreted Alkaline Phosphatase Silent Information Regulator Sterol Regulatory Element- Binding Protein
Nampt OEA PG PGRN PPAR SEAP SIRT SREBP TG	nucleotide Nicotinamide Phosphoribosyl- transferase Oleoyl Ethanolamide Prostaglandin Progranulin Peroxisome Proliferator-activated Receptor Secreted Alkaline Phosphatase Silent Information Regulator Sterol Regulatory Element- Binding Protein
Nampt OEA PG PGRN PPAR SEAP SIRT SREBP TG TNF	nucleotide Nicotinamide Phosphoribosyl- transferase Oleoyl Ethanolamide Prostaglandin Progranulin Peroxisome Proliferator-activated Receptor Secreted Alkaline Phosphatase Silent Information Regulator Silent Information Regulator Sterol Regulatory Element- Binding Protein Triglyceride Tumor Necrosis Factor
Nampt OEA PG PGRN PPAR SEAP SIRT SREBP TG TNF TZD	nucleotide Nicotinamide Phosphoribosyl- transferase Oleoyl Ethanolamide Prostaglandin Progranulin Peroxisome Proliferator-activated Receptor Secreted Alkaline Phosphatase Silent Information Regulator Silent Information Regulator Sterol Regulatory Element- Binding Protein Triglyceride Tumor Necrosis Factor Thiazolidinedione

Me

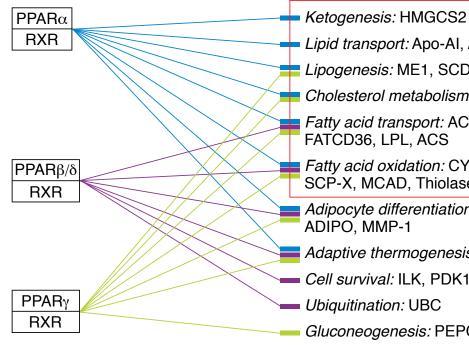
Targeting PPAR β / δ For Weight Loss: Thomas G. Brock, Ph.D. **Exercise in a Pill**

First, understand this: history tells us to beware of the side effects of therapeutic drugs. In the early 1990's, Fen Phen was approved by the FDA for weight control in the seriously obese. Heavily marketed to the weightconscious "Me" generation. Fen Phen became known as the "miracle pill" and was used by millions for quick and effective weight loss. Fen Phen is a combination of fenfluramine, which suppresses appetite, and with phentermine, a stimulant. Fenfluramine, an amphetamine introduced two decades earlier with little fanfare, increases serotonin levels, which, in the central nervous system, produces the desired effect on food intake (Figure 1). Unfortunately, by the time Fen Phen was released, the dark side of fenfluramine was beginning to be revealed. Serotonin also activates receptors on cardiovascular tissues, slowly stimulating mitogenesis. By the 1990's, evidence was accumulating that prolonged use of fenfluramine caused serious, if not fatal, cardiac and pulmonary complications. Specifically, fenfluramine produced heart valve defects through abnormal growth of heart tissue as well as primary pulmonary hypertension, which may have been related to changes in heart function secondary to the valve defects. Naturally, these changes in cardiovascular function were not reversed when drug use stopped. With 18 million prescriptions written for Fen Phen in 1996 in the United States alone, the public served as unwitting guinea pigs, demonstrating that the same side effects of fenfluramine were evident in Fen Phen. Law suits providing tens of billions in claims only begin to reflect the damages resulting from persistent cardiovascular disease, the cost of trying to lose a few pounds with a pill.

Now banned, Fen Phen has faded from public parlance; this is unfortunate, because the next "miracle pills" are already emerging. The Fen Phen experience provides a deeper understanding of how to anticipate potential side effects. Fenfluramine was known to increase serotonin levels. On the one hand, side effects due to serotonin-independent actions of fenfluramine could not be anticipated. The many known actions of serotonin, through its different receptors in different tissues, could be expected to result from taking fenfluramine. Similarly, other drugs that broadly elevate serotonin levels (e.e., methamphetamine) can suppress appetite but should be expected to, like Fen Phen, evoke undesirable serotonin-mediated effects. For this reason, new drugs must modulate pathways other than serotonin signaling.

GW 1516: Actions through PPAR β/δ

The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors which bind, with retinoid X receptors (RXR), to specific peroxisome proliferator response elements (PPRE) to regulate gene expression. PPARa is abundant in liver as well as in kidney, heart, brown adipose, intestine, and muscle. Activated by the synthetic agonists known as fibrates (e.g., fenofibrate, clofibrate), PPARa alters gene expression relevant to altered lipid metabolism, lowering triglycerides, and raising HDL in dyslipidemia. PPARy, abundant in adipose and other tissues, is activated by glitazones


(e.g., troglitazone, rosiglitazone) to reduce hyperglycemia associated with type 2 diabetes. PPARB, described by a European group studying Xenopus (frog), was found to be identical to PPARS, identified by an American group studying mice.^{1,2} Less is known about this isoform. A cursory review of the PPAR signaling pathways (Figure 2) suggests that this isoform is less focused on lipid metabolism than either PPAR α or PPAR γ . However, a selective partial agonist for PPAR β/δ was found to correct plasma lipid parameters and improve insulin sensitivity in high fat fed ApoB100/CETP-transgenic mice, suggesting that partial agonists of PPAR β/δ might be useful in treating dyslipidemia.³ Intriguingly, PPAR β/δ activation stimulated free fatty acid oxidation in muscle cells. Could a PPAR β/δ agonist be a fat burner?

GW 1516 (aka GW 501516) was first described in 2001 to be a potent, selective agonist of PPARβ/δ, binding the receptor with a K_i of 1.1 nM.⁴. In insulinresistant middle-aged obese primates, GW 1516 increased reverse cholesterol transport, dramatically increasing serum HDL cholesterol while lowering LDL cholesterol, fasting triglycerides and insulin.⁴ Similar improvements in multiple abnormalities associated with metabolic syndrome occurred in overweight men given GW 1516 for two weeks.⁵ Part of this effect was thought to be due to increased fatty acid oxidation, a process that might spur weight loss. Perhaps most remarkably, GW 1516 significantly reduced weight gain in mice fed a high-fat diet for two months, specifically reducing fat accumulation in all depots by approximately 70%.⁶ Similarly, mice engineered to express an activated form of PPARB/8 in skeletal muscle demonstrated resistance to highfat induced weight gain, indicating that some of the effects of GW 1516 were through this receptor in skeletal muscle.⁶ These results recapitulated those of a previous study, where expression of an activated form of PPAR β/δ , this time in adipose tissue, induced fatty acid oxidation and utilization to prevent obesity in both high-fat diet-induced and genetically predisposed (Lepr^{db/db}) mice.⁷ While this represented prevention of weight gain, rather than true weight loss, it suggested that, with a PPARB/8 activator like GW 1516, some of the drawbacks of the Western diet could be avoided.

One 'side effect' of PPAR β/δ activation was its effects on muscle performance. The transgenic mice described above, expressing activated PPAR β/δ in skeletal muscle, developed more fatigue-resistant type I muscle fibers than wild type mice. When run on enclosed treadmills until exhaustion, transgenic mice ran approximately 60 min. (or ~70%) longer and almost twice the distance of wild type mice!⁶ In a subsequent study, mice given GW 1516 by oral gavage for five weeks and regularly exercised showed dramatic improvements in running endurance compared to similarly exercised mice given vehicle.⁸ As with the transgenic mice, the gain in distance run was greater than that in time endured in response to GW 1516, suggesting that the mice also ran faster. Importantly, the improvements in performance in response to GW 1516 were only observed in mice that were regularly exercise-trained: sedentary mice given GW 1516 for five weeks performed like sedentary mice given vehicle.⁸ Combining the finding that regular ingestion of GW 1516 can greatly improve muscle performance with studies showing that this compound is bioactive in humans has produced two major effects. First, the World Anti-Doping Agency added GW 1516 to its prohibited list in 2009. Second, a robust black market for GW 1516 has emerged.

AICAR Instead of Exercise

The study demonstrating that GW 1516 boosted performance when taken with exercise involved treadmill running with "progressively increasing intensity and time", ultimately running 50 min/day at 18 m/min. For the strain and sex of mice used, 18 m/min represented its 'critical speed', the speed that would result in exhaustion over the given interval.⁹ This is less like mall walking and more like world class half marathon running. This suggests that GW 1516

Figure 2. Biochemical and cellular pathwasy regulated by the PPARs. Adapted from the Kyoto Encyclopedia of Genes and Genomes (KEGG: www.genome.jp/kegg)

might not benefit the weekend warrior as much as Olympians, racehorses, and greyhounds. How can this help the average Joe?

Exercise activates specific physiological pathways; one of the important ones involves AMP-activated protein kinase (AMPK), a master regulator of cellular and organismal metabolism. In mammals, AMPK contributes to glucose homeostasis and exercise physiology, and it also protects against metabolic stress.¹⁰ The compound AICAR selectively activates AMPK.¹¹ Surprisingly, mice given AICAR for 4 weeks, without added exercise, experienced induced metabolic gene expression and enhanced running endurance by 44%.8 Although AICAR did not completely mimic exercise in terms of its effects on gene expression, the majority of the oxidative genes (30 out of 32) upregulated by AICAR are active in mice with constitutively active PPAR β/δ in skeletal muscle, perhaps reflecting genes that are crucial to improved muscle performance.

The key to combining PPAR β/δ with AMPK lies in their synergy. Several genes induced by either pathway are super-induced when both pathways are activated. Also, the combination of GW 1516 plus AICAR stimulated novel biochemical pathways. PPAR β/δ , when activated alone and in the absence of physical activity, signals heavily through lipid metabolism, β-oxidation of free fatty acids, cholesterol efflux, and energy uncoupling.^{6,7,12} When PPAR β/δ is activated either with exercise or with AICAR-mediated stimulation of AMPK, fat metabolism is supercharged and numerous additional, complementary pathways supporting energy consumption and tissue remodeling are put in play (Figure 3).⁸ The net effect combines weight loss with muscle endurance enhancement.

An interesting caveat relates to the side effects of treatment with GW 1516 plus AICAR. The GW 1516-plus-training (GW+Tr) signature of genes induced in mouse quadriceps includes 130 genes and the GW 1516-plus-AICAR (GW+AI) signature includes 189 genes. Remarkably, only 52 genes are on both lists. This means that GW+AI treatment induces 137 genes that are not generated by GW+Tr. This leaves plenty of room for unwanted side effects, through either AMPK-dependent or AMPK-independent effects of AICAR. Remember Fen Phen.

Lipid Metabolism

Lipid transport: Apo-AI, Apo-AII, Apo-AV, Apo-CIII, PLTP

Lipogenesis: ME1, SCD-1, Δ^6 -desaturase

Cholesterol metabolism: CYP7A1, CYP8B1, CYP27, LXRa

Fatty acid transport: ACBP, FABP1, BAFP3, OLR1, FATP1/4

Fatty acid oxidation: CYP4A1, CPT-1, CPT-2, ACO, LCAD, SCP-X, MCAD, Thiolase B

Adipocyte differentiation: PGAR, aP2, Perilipin, CAP,

Adaptive thermogenesis: UCP-1

Gluconeogenesis: PEPCK, AQP7, GvK

Acute inflammatory response: SERPINA1A, CFD Angiogenesis: ANGPTL4 Antioxidase activity: SOD3, CAT Apoptosis: CIDEA. CIDEC Carbohydrate metabolism: LDHB, FBP2 Fat metabolism: SCD1, FABP3, PDK4, UCP3, ADIPOQ, DGAT2, SLC27A1, LIPE, SLC25A20, CD36, PCK1, FASN, FABP4, MGLL, ACAT2, ACADL, RETN, MLYCD, TKT, ACLY Heat shock: HSP90, DNAJB1 Oxygen carrier: HBB-B2 Signal transduction: ADRB3, PTP1B, DUSP7 Steroid biogenesis: RBP4 Transcription: NR4A2 Transport: SLC1A5, TPCN1, SVS5

Figure 3. Biochemical and cellular pathways common to PPARβ/δ+exercise and PPARβ/δ +AICAR signaling in mouse skeletal muscle. Adapted from Table S4.8

- Dreyer, C., Krey, G., Keller, H., et al. Cell 68, 879-887 (1992).
- Kliewer, S.A., Forman, B.M., Blumberg, B., *et al. Proc. Natl. Acad. Sci. USA* **91**, 7355-7359 (1994).
- Sauerberg, P., Olsen, G.S., Jeppesen, L., et al. J. Med. Chem. 50, 1495-1503 (2007).
- Oliver, W.R., Shenk, J.L., Snaith, M.R., et al. Proc. Natl. Acad. Sci. USA 98(9), 5306-5311 (2001).
- Risérus, U., Sprecher, D., Johnson, T., et al. Diabetes 57(2), 332-339 (2008)
- Wang, Y.-X., Zhang, C.-L., Yu, R.T., et al. PLoS Biol. 2(10), 1532-1539 (2004).
- Wang, Y.-X., Lee, C.-H., Tiep, S., et al. Cell 113, 159-170 (2003).
- Narkar, V.A., Downes, M., Yu, R.T., et al. Cell 134, 1-11 (2008).
- Billat, V.L., Mouisel, E., Roblot, N., et al. J. Appl. Physiol. 98, 1258-1263 (2005).
- Hardie, D.G. and Carling, D. Eur. J. Biochem. 246, 259-273 (1997).
- Corton, J.M., Gillespie, J.G., Hawley, S.A., et al. Eur. J. Biochem. 229, 558-565 (1995)
- 12. Dressel, U., Allen, T.L., Pippal, J.B., et al. Mol. Endocrinol. 17(12), 2477-2493 (2003).


Antibodies

ACAT-1 Polyclonal Antibody

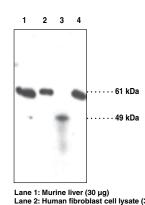
Cholesterol Acyltransferase 1, SOAT1, Sterol O-Acyltransferase 1

Peptide affinity-purified IgG **Stability:** ≥1 year at -20°C **Summary:** Antigen: human ACAT-1 amino acids 6-23 • Host: rabbit • Cross Reactivity: (+) mouse, rat, porcine, and human ACAT-1 • Application(s): IF and WB • ACAT-1 catalyzes the formation of cholesterol esters from cholesterol and long chain fatty acyl-CoA, and may play a role in the development of atherosclerosis.

500 µl

Immunofluorescent staining of RAW 264.7 cells with anti-human ACAT-1 polyclonal antibody. The positive staining was visualized with an anti-rabbit secondary antibody conjugated to Cy3. Note the very intense perinuclear staining.

• Also Available: ACAT-1 Blocking Peptide (10005090)


ACAT-2 Polyclonal Antibody

Sterol O-Acyltransferase 2

Peptide affinity-purified IgG **Stability:** ≥1 year at -20°C

Summary: Antigen: human ACAT-2 amino acids 3-20 • Host: rabbit • Cross Reactivity: (+) human, mouse, rat, porcine, and ovine ACAT-2 • Application(s): ICC, IHC, and WB • ACAT-2 catalyzes the formation of cholesterol esters from cholesterol and long chain fatty acyl-CoA.

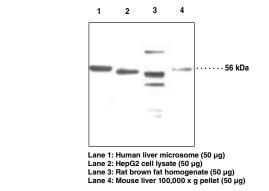
500 µl

Lane 2: Human fibroblast cell lysate (30 µg) Lane 3: Jurkat (human) cell lysate (30 µg) Lane 4: Rat liver (60 µg)

• Also Available: ACAT-2 Blocking Peptide (10005091)

Adipose Triglyceride Lipase Polyclonal Antibody

ATGL, Desnutrin, $PLA_2\zeta$


Peptide affinity-purified IgG **Stability:** ≥1 year at -20°C

Summary: Antigen: human ATGL amino acids 382-400 • Host: rabbit • Cross Reactivity: (+) human, mouse, and rat ATGL • Application(s): IHC (paraffinembedded sections) and WB • ATGL is one of the key enzymes involved in the mobilization of fatty acids from triglyceride stores in adipose tissue, catalyzing the conversion of triacylglycerols to diacylglycerols.

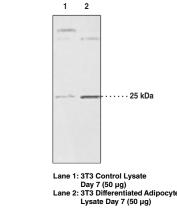
500 µl

100028

100027

10006409

10337


• Also Available: Adipose Triglyceride Lipase Blocking Peptide (10008492)

AdPLA₂ Polyclonal Antibody

Adipose PLA₂, HRAS-Like Suppressor 3

Peptide affinity-purified IgG **Stability:** ≥ 1 year at -20°C **Summary:** Antigen: human AdPLA₂ amino acids 147-162 • Host: rabbit • Cross Reactivity: (+) human and mouse AdPLA₂ • Application(s): WB • AdPLA₂ is highly expressed in adipose tissue, is associated with adipocyte differentiation and lipolysis, and has been implicated as a major player in the development of obesity. This antibody was raised against the C-terminal region of the human protein.

500 µl

• Also Available: AdPLA₂ Blocking Peptide (10338)

ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37)

Angiopoietin-5, Angiopoietin-Like Protein 3, ANGPT5, FHBL2

A 1 mg/ml solution in PBS, pH 7.4 **Stability:** ≥6 months at -20°C **Summary:** Antigen: recombinant human ANGPTL3 • Host: mouse, clone Kairos-37 • Cross Reactivity: (+) human ANGPTL3; (-) human ANGPTL isoforms 1, 2, 4, 6, and 7 • Application(s): ELISA and WB • ANGPTL3 regulates angiogenesis and also directly regulates lipid, glucose, and energy metabolism.

> 1intactcleaved

Lane 1: Recombinant ANGPTL3 (human)

ANGPTL3 (mouse) Monoclonal Antibody (Clone Kairos3-1541)

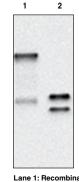
ANG-5, Angiopoietin-5, Angiopoietin-Like 3, Angiopoietin-Related Protein 3, ANGPT5, FHBL2 A 1 mg/ml solution in PBS, pH 7.4 **Stability:** ≥6 months at -20°C

Summary: Antigen: recombinant mouse ANGPTL3 • Host: rat, clone Kairos3-1541
Cross Reactivity: (+) mouse ANGPTL3; (-) mouse ANGPTL4 and human ANGPTL3 • Application(s): ELISA and WB • ANGPTL3 regulates angiogenesis and also directly regulates lipid, glucose, and energy metabolism.

50 μg 100 μg

50 µg

100 µg


Lane 1: Recombinant ANGPTL3 (mouse)

ANGPTL3 (mouse) Monoclonal Antibody (Clone Kairos3-3741)

ANG-5, Angiopoietin-5, Angiopoietin-Like 3, Angiopoietin-Related Protein 3, ANGPT5, FHBL2 A 1 mg/ml solution in PBS, pH 7.4 **Stability:** ≥6 months at -20°C **Summary:** Antigen: recombinant mouse ANGPTL3 • Host: rat, clone Kairos3-3741

 Cross Reactivity: (+) mouse ANGPTL3; (-) mouse ANGPTL4 and human ANGPTL3 • Application(s): ELISA and WB • ANGPTL3 regulates angiogenesis and also directly regulates lipid, glucose, and energy metabolism.

50 µg 100 µg

Lane 1: Recombinant ANGPTL3 (mouse) Lane 2: Recombinant ANGPTL3 (mouse) (FLD)

10805

ANGPTL6 (human) Monoclonal Antibody (Clone Kairos-60)

AGF, Angiopoietin-Like Protein 6, Angiopoietin-Related Growth Factor

A 0.5 mg/ml solution in PBS, pH 7.4 **Stability:** ≥6 months at -20°C

Summary: Antigen: recombinant human ANGPTL6 • Host: mouse, clone Kairos-60 • Cross Reactivity: (+) human ANGPTL6; (-) human ANGPTL isoforms 1, 2, 3, 4, and 7 • Application(s): ELISA and WB • ANGPTL6 regulates angiogenesis and also directly regulates lipid, glucose, and energy metabolism.

50 μg 100 μg -

Lane 1: Recombinant human ANGPTL6

100030

10816

Endothelial Lipase Polyclonal Antibody

EDL, EL

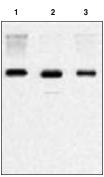
10806

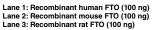
10807

Peptide affinity-purified IgG **Stability:** ≥1 year at -20°C

Summary: Antigen: human EL amino acids 19-32 • Host: rabbit • Cross Reactivity: (+) human, mouse, rat, porcine, and ovine EL • Application(s): IHC and WB • EL is a major genetic determinant for the concentration, structure, and metabolism of HDL, which protects against atherosclerosis.

500 µl


• Also Available: Endothelial Lipase (human) Blocking Peptide (10004111)


FTO (human) Monoclonal Antibody (Clone FT 86-4)

Fat Mass- and Obesity-associated Protein, FATSO

A 1 mg/ml solution in PBS, pH 7.4 **Stability:** ≥6 months at -20°C

5	0	μ	g
1	00)	μg

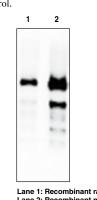
FTO (mouse) Monoclonal Antibody (Clone FT 62-6)

Fat Mass- and Obesity-associated Protein, FATSO

A 1 mg/ml solution in PBS, pH 7.4 Stability: ≥6 months at -20°C

Summary: Antigen: recombinant human FTO • Host: mouse, clone FT 62-6 • Isotype: IgG₁, • Cross Reactivity: (+) mouse FTO, (-) rat FTO • Application(s): ELISA, IHC, IP, and WB • FTO is associated with type 2 diabetes and positively correlated with other symptoms of the metabolic syndrome, including higher fasting insulin, glucose, and triglycerides, and lower HDL-cholesterol.

50 µg 100 µg


Lane 1: Recombinant mouse FTO (10 ng) Lane 2: 3T3L1 cell lysate (100 µg)

FTO (mouse) Monoclonal Antibody (Clone FT 342-1)

Fat Mass- and Obesity-associated Protein, FATSO

A 1 mg/ml solution in PBS, pH 7.4 Stability: ≥6 months at -20°C Summary: Antigen: recombinant mouse FTO • Host: rat, clone FT 342-1 • Isotype: IgG_{2ar} • Cross Reactivity: (+) mouse and rat FTO; (-) human FTO • Application(s): ELISA and WB • FTO is associated with type 2 diabetes and positively correlated with other symptoms of the metabolic syndrome, including higher fasting insulin, glucose, and triglycerides, and lower HDL-cholesterol.

50 μg 100 μg

GPR40 Polyclonal Antibody

FFAR1, Free Fatty Acid Receptor, G Protein-Coupled Receptor 40 Peptide affinity-purified IgG **Stability:** ≥1 year at -20°C

Summary: Antigen: human GPR40 amino acids 210-222 • Host: rabbit • Cross Reactivity: (+) human GPR40 • Application(s): IHC • GPR40 is a GPCR found predominantly in the β -cells of pancreatic islets that has been implicated in the regulation of insulin secretion. Overexpression of GPR40 in mouse β-cells leads to glucose intolerance suggesting a link between GPR40 expression and diabetes.

500 µl

•Also Available: GPR40 Blocking Peptide (10007206)

Hormone Sensitive Lipase Polyclonal Antibody

LIPE

10814

10815

Peptide affinity-purified IgG **Stability:** ≥1 year at -20°C

Summary: Antigen: human HSL amino acids 731-741 • Host: rabbit • Cross Reactivity: (+) human, mouse, and rat HSL • Application(s): WB • HSL catalyzes the hydrolysis of tri-, di-, and monoacylglycerols, as well as cholesterol esters. 1 2

11β-Hydroxysteroid Dehydrogenase

Corticosteroid 11B-Dehydrogenase Isozyme 1, 11B-HSD1

Peptide affinity-purified IgG Stability: ≥1 year at -20°C

•Also Available: 11β-Hydroxysteroid Dehydrogenase (Type 1)

Blocking Peptide (10005729)

Summary: Antigen: human 11β-HSD1 amino acids 77-92 • Host: rabbit • Cross

Reactivity: (+) human, mouse, and rat 11B-HSD1 • Application(s): IHC (paraffin-

embedded sections) and WB • 11B-HSD1 catalyzes the conversion of inactive

cortisone to active cortisol in adipose tissue. Over-expression of 11β-HSD1 results

in visceral obesity and metabolic syndrome including insulin-resistant diabetes,

1 2

An ---

(Type 1) Polyclonal Antibody

hyperlipidemia, and hyperphagia.

Trial

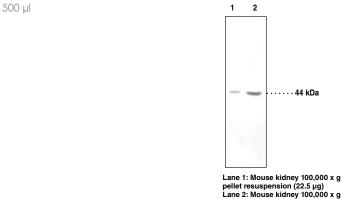
500 µl

86 kDa

Lane 1: Rat brown fat lysate (40 µg) Lane 2: RAW 264.7 cell lysate (40 µg)

• 32 kDa

Lane 1: Rat liver microsomes (50 µg) Lane 2: Mouse liver microsomes (50


10004303

11β-Hydroxysteroid Dehydrogenase (Type 2) Polyclonal Antibody

10004549

Corticosteroid 11β-Dehydrogenase Isozyme 2, 11β-HSD2 Peptide affinity-purified IgG Stability: ≥1 year at -20°C

Summary: Antigen: human 11β-HSD2 amino acids 25-40 • Host: rabbit • Cross Reactivity: (+) human, mouse, and rat 11β-HSD2 • Application(s): ICC and WB • 11β-HSD2 plays a critical role in normal physiology in the corticosteroid regulation of sodium homeostasis and the pathophysiology of hypertension by converting active cortisol to inactive cortisone. Mutation in the gene encoding 11β-HSD2 results in cortisol induction of hypertension and hypokalemia, a syndrome of apparent mineralocorticoid excess.

ension (45 µg)


•Also Available: 11β-Hydroxysteroid Dehydrogenase (Type 2) Blocking Peptide (10242)

LDL Receptor Polyclonal Antibody 10007665 LDLR

Affinity-purified IgG **Stability:** ≥1 year at -20°C

Summary: Antigen: mouse LDL receptor amino acids 499-511 • Host: rabbit • Cross Reactivity: (+) human, mouse, and rat LDL receptors • Application(s): ICC, IF, and WB • The LDLRs are cell surface glycoproteins that scavenge LDL from the blood and regulate plasma LDL cholesterol.

500 µl

Immunofluorescent staining of RAW 264.7 cells with Cayman's LDLR polyclonal antibody at 4 µg/ml. The positive cytoplasm staining was visualized in green with Cayman's FITC conjugated goat anti-rabbit secondary antibody (Item No. 10006588).

• Also Available: LDL Receptor Blocking Peptide (10007672)

MCAD Polyclonal Antibody

101730

Medium-chain Fatty Acyl-CoA Dehydrogenase Protein A-purified IgG Stability: ≥2 years at -20°C

Summary: Antigen: recombinant human MCAD • Host: rabbit • Cross Reactivity: (+) human, porcine, ovine, and mouse MCAD • Application(s): WB • MCAD is a mitochondrial enzyme that catalyzes the first step in the β -oxidation of fatty acids. Its expression is induced during periods of fasting and is regulated by PPARa, a ligandactivated transcription factor involved in the regulation of lipid homeostasis. MCAD expression can be used as a marker to evaluate the *in vivo* activity of PPARα.

500 µl

Lane 1: Recombinant rat FTO Lane 2: Recombinant mouse F

10007205

Melanocortin-4 Receptor Polyclonal Antibody

10006355

MC4R

Peptide affinity-purified IgG **Stability:** ≥1 year at -20°C

Summary: Antigen: mouse MC4R amino acids 21-33 • Host: rabbit • Cross Reactivity: (+) human, mouse, and rat MC4R • Application(s): IHC (formalinfixed paraffin-embedded sections) and WB • MC4R receptor plays a critical role in appetite regulation and is a prime target for therapeutic intervention in obesity.

500 µl

Immunoperoxidase staining of rat brain section with the MC4R polyclonal antibody. Note the tadpole like staining of cortex neurons.

• Also Available: Melanocortin-4 Receptor Blocking Peptide (10006356)

Nampt Monoclonal Antibody (Clone OMNI 379)

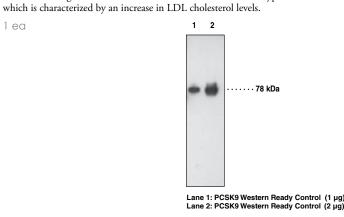
10813

Nicotinamide Phosphoribosyltransferase, PBEF1, Pre-B Cell Colony Enhancing Factor 1, Visfatin

A 1 mg/ml solution in PBS, pH 7.4 **Stability:** ≥6 months at -20°C

Summary: Antigen: recombinant human Nampt • Host: mouse, clone OMNI 379 • Cross Reactivity: (+) human, mouse, and rat Nampt • Application(s): ELISA, FC, ICC, IHC, IP, and WB • Nampt is an adipokine involved in the biosynthesis of NAD+ and is highly expressed in visceral fat. It promotes vascular smooth muscle cell maturation, inhibits neutrophil apoptosis, and activates the insulin receptor with insulin-mimetic effects, lowering blood glucose and improving insulin sensitivity. Serum levels of Nampt correlate with obesity.

50 µg 100 µg

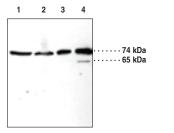

Lane 1: Recombinant human Nampt (His-tagge Lane 2: Recombinant human Nampt (FLAG®-tagge Lane 3: Recombinant mouse Nampt (His-tagg Lane 4: Recombinant rat Nampt (His-tagge

PCSK9 Monoclonal Antibody (Clone 15A6)

NARC-1, Proprotein Convertase Subtilisin Kexin 9

Lyophilized IgG_1 **Stability:** ≥ 1 year at $-20^{\circ}C$ Summary: Antigen: recombinant human PCSK9 • Host: mouse, clone 15A6 • Isotype: IgG₁ • Cross Reactivity: (+) human recombinant PCSK9 • Application(s): PCSK9 ligand blotting and WB • PCSK9 is a member of the subtilisin serine protease family with an important role in lipoprotein metabolism. Gain-of-function mutations in the PCSK9 gene are associated with autosomal dominant hypercholesterolemia

1 ea


PCSK9 Polyclonal Antibody

NARC-1, Proprotein Convertase Subtilisin Kexin 9

Protein-A purified IgG Stability: ≥1 year at -20°C

Summary: Antigen: recombinant human PCSK9 • Host: rabbit • Cross Reactivity: (+) human, rat, and mouse PCSK9 • Application(s): ICC and WB • PCSK9 is a member of the subtilisin serine protease family with an important role in lipoprotein metabolism. Gain-of-function mutations in the PCSK9 gene are associated with autosomal dominant hypercholesterolemia which is characterized by an increase in LDL cholesterol levels.

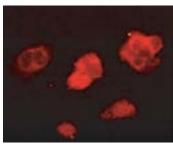
1 ea

Lane 1: Mouse heart (10,000 x g supernatant) (40 µg) Lane 2: Mouse liver (10,000 x g supernatant) (50 µg) Lane 3: PCSK9 Western Ready Control (2 µl) Lane 4: PCSK9 Western Ready Control (5 µl)

PCSK9 (human) Polyclonal Antibody

NARC-1, Proprotein Convertase Subtilisin Kexin 9

Peptide affinity-purified IgG Stability: ≥1 year at -20°C

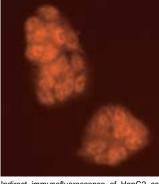

Summary: Antigen: human PCSK9 amino acids 490-502 • Host: rabbit • Cross Reactivity: (+) human, mouse, and rat PCSK9 • Application(s): ICC, IF, and WB • PCSK9 is a member of the subtilisin serine protease family with an important role in lipoprotein metabolism. Several gain of function mutations in the PCSK9 gene are associated with hypercholesterolemia which is characterized by an increase in LDL cholesterol levels.

500 µl

10218

10240

500 µl


Immunofluorescent staining HepG2 cells with the PCSK9 polyclonal antibody at 16 µg/ml. The positive cytoplasm staining was visualized in red with a Cy3 conjugated goat anti-rabbit secondary antibody.

• Also Available: PCSK9 (human) Blocking Peptide (10007186)

PCSK9 (mouse) Polyclonal Antibody 10008811

NARC-1, Proprotein Convertase Subtilisin Kexin 9

Peptide affinity-purified IgG Stability: ≥1 year at -20°C Summary: Antigen: mouse PCSK9 amino acids 152-163 • Host: rabbit • Cross Reactivity: human, mouse, and rat PCSK9 • Application(s): ICC, IF, and WB • PCSK9 is a member of the subtilisin serine protease family with an important role in lipoprotein metabolism. Several gain of function mutations in the PCSK9 gene are associated with hypercholesterolemia which is characterized by an increase in LDL cholesterol levels.

Indirect immunofluorescence of HepG2 cells incubated with the PCSK9 polyclonal antibody at 8 µg/ml. The positive cytoplasm staining was visualized in red with a Cy3 conjugated goat anti-rabbit secondary antibody

•Also Available: PCSK9 (mouse) Blocking Peptide (10009581)

PEPCK Polyclonal Antibody

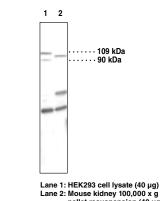
Pck1, PEPCK-c, Phosphoenolpyruvate carboxykinase Peptide affinity-purified IgG Stability: ≥1 year at -20°C

Summary: Antigen: mouse and rat PEPCK protein amino acids 5-17 • Host: rabbit • Cross Reactivity: (+) mouse and rat PEPCK protein • Application(s): WB • PEPCK catalyzes the conversion of oxaloacetate to phosphoenolpyruvate, the first committed step in gluconeogenesis. Both non-insulin-dependent diabetes mellitus and streptozotocin-induced diabetes result in elevated PEPCK activity, protein, and mRNA. This antibody was generated against mouse cytosolic PEPCK.

500 ul

10007185

• Also Available: PEPCK Blocking Peptide (10007475)

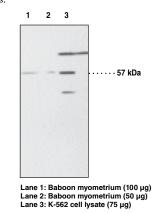

PGC-1 Polyclonal Antibody	101707
---------------------------	--------

PPARy Coactivator 1

Protein-A purified IgG Stability: ≥2 years at -20°C

Summary: Antigen: human PGC-1a amino acids 75-90 • Host: rabbit • Cross Reactivity: (+) human, mouse, and rat PGC-1 α and PGC-1 β • Application(s): IHC (paraffin-embedded sections) and WB • Three PGC-1 isoforms have been characterized - PGC-1a, PGC-1B, and PGC-1-related coactivator. PGC-1a and PGC-1ß are inducible transcriptional coactivators for certain nuclear receptors and play a key role in energy metabolism, hepatic gluconeogenesis, and cholesterol homoeostasis. Changes in PGC-1 levels may play a role in metabolic disorders such as type II diabetes and obesity.

500 µl


• Also Available: PGC-1 Blocking Peptide (301707)

PPARα Polyclonal Antibody

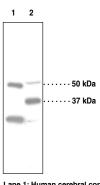
Peptide affinity-purified IgG **Stability:** ≥1 year at -20°C

Summary: Antigen: human, mouse, and rat PPARa amino acids 22-36 • Host: rabbit • Cross Reactivity: (+) human, mouse, rat, ovine, and porcine PPARa; (-) PPARγ • Application(s): WB • PPARα is a ligand-activated transcription factor involved in the regulation of lipid homeostasis.

500 µl

•Also Available: PPARa Blocking Peptide (301710)

PPARδ Polyclonal Antibody


FAAR, NUC1, Nuclear Hormone Receptor 1, PPARB

Peptide affinity-purified IgG **Stability:** ≥1 year at -20°C

Summary: Antigen: human PPARS amino acids 39-54 • Host: rabbit • Cross Reactivity: (+) human, mouse, ovine, porcine, and rat PPAR8 • Application(s): ICC, IHC, and WB • PPARδ is ubiquitously expressed but is particularly abundant in tissues such as liver, intestine, kidney, abdominal adipose, and skeletal muscle, all of which are involved in lipid metabolism. PPAR8 is a mediator of diverse physiological functions including lipid and cholesterol homeostasis, embryo implantation, cancer development, and obesity.

500 µl

10004943

Lane 1: Human cerebral cortex (30 µg) Lane 2: Mouse liver (30 µg)

• Also Available: PPARδ Blocking Peptide (10006247)

PPARy Polyclonal Antibody

101700

Peptide affinity-purified IgG Stability: ≥1 year at -20°C

Summary: Antigen: human PPARy1 amino acids 82-101 (amino acids 110-129 of PPARy2) • Host: rabbit • Cross Reactivity: (+) human and mouse PPARy1 and PPARy2 • Application(s): WB • PPARy is a ligand-activated transcription factor involved in the regulation of lipid homeostasis and may function as a master regulator of adipogenesis.

500 µl

101710

57 kDa

Lane 1: Rat adipose homogenate (30 µg)

• Also Available: PPARy Blocking Peptide (301700)

101720

Antibodies

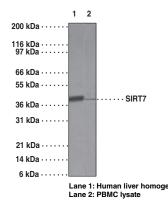
Serum Retinol Binding Protein 4 Polyclonal Antibody

pRBP, Plasma Retinol Binding Protein 4, sRBP4

Peptide affinity-purified IgG **Stability:** ≥1 year at -20°C

Summary: Antigen: human sRBP4 amino acids 28-37 • Host: rabbit • Cross Reactivity: (+) human sRBP4 • Application(s): WB • sRBP4 binds one equivalent of vitamin A and is one of the major retinol carriers found in the blood of mammals. It is an adipocyte-derived 'signal' whose elevation causes systemic insulin resistance whereas reduction of serum concentrations improves insulin action. Thus, sRBP4 may contribute to the pathogenesis of type 2 diabetes.

500 µl

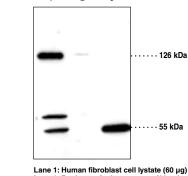

•Also Available: Serum Retinol Binding Protein 4 Blocking Peptide (10007682) Serum Retinol Binding Protein 4 Western Ready Control (10009754)

SIRT7 Polyclonal Antibody Sir2, Sirtuin 7

Protein G-purified IgG Stability: ≥1 year at -20°C

Summary: Antigen: human SIRT7 amino acids 35-51 and 361-377 • Host: rabbit • Cross Reactivity: (+) human SIRT7 • Application(s): WB • SIRT7 is a member of the sirtuin family of proteins, which are able to metabolize NAD*. Reports of histoneactivated Sir2-mediated NAD+ metabolism and NAD+-activated Sir2-mediated histone deacetylation suggest a coupled reciprocal activation mechanism involving interactions of Sir2 with NAD* and the N-e-acetyl-lysine groups of acetylated histone.

1 ea



SREBP-2 Polyclonal Antibody

SREBF2, Sterol Regulatory Element-binding Transcription Factor 2 Affinity-purified IgG **Stability:** ≥1 year at -20°C

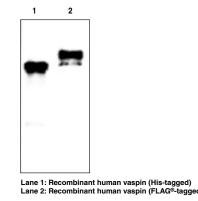
Summary: Antigen: human SREBP-2 amino acids 455-469 • Host: rabbit • Cross Reactivity: (+) human, mouse, and rat SREBP-2 • Application(s): ICC and WB • SREBP-2 is a transcription factor that plays a critical role in lipid homeostasis by regulating genes involved in cholesterol and fatty acid metabolism.

500 ul

Lane 2: Rat brown fat homogenate (60 µg) Lane 3: Rat testis supernatant (60 µg)

• Also Available: SREBP-2 Blocking Peptide (10009266)

Vaspin (human) Monoclonal Antibody (Clone VP63)

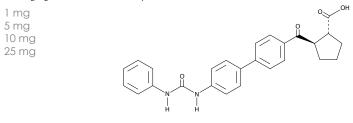

OL-64, Serpin A12, Visceral Adipose Tissue-Derived Serine Protease Inhibitor A 1 mg/ml solution in PBS, pH 7.4 **Stability:** ≥6 months at -20°C Summary: Antigen: recombinant human vaspin • Host: mouse, clone VP63 • Cross Reactivity: (+) human vaspin • Application(s): ELISA and WB • Vaspin is an insulinsensitizing adipocytokine present in visceral and subcutaneous white adipose tissue that may regulate immune responses and inflammation and correlates with various metabolic parameters. Vaspin may represent a novel biomarker for obesity and impaired insulin sensitivity and might serve as a new therapeutic target of metabolic syndrome.

10007681

13477

10007663

Biochemicals


10812

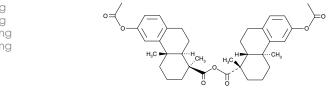
A-922500 10012708

[959122-11-3] **MF:** C₂₆H₂₄N₂O₄ **FW:** 428.5 **Purity:** ≥95%

A crystalline solid **Stability:** ≥1 year at -20°C

Summary: A potent inhibitor of diacylglycerol acyltransferase-1 ($IC_{50}S = 7$ and 24 nM, for human and mouse, respectively); confers significant weight loss within seven days and significantly reduces plasma and liver triglycerides when administered at 3 mg/kg to diet-induced obesity mice

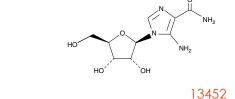
Acetyl Podocarpic Acid Anhydride


[344327-48-6] APD

MF: $C_{38}H_{46}O_7$ **FW:** 614.8 **Purity:** \ge 98%

A crystalline solid **Stability:** ≥2 years at -20°C

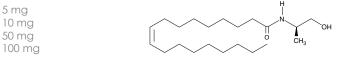
Summary: A potent, semi-synthetic LXR agonist derived from extracts of the mayapple; induces the expression of the ABCA1 reverse cholesterol transporter to increase the efflux of cholesterol from enterocytes and thus inhibits the overall absorption of cholesterol (ED₅₀ = 1 nM)


1 mg 5 mg 10 mg 50 mg

AICAR

[2627-69-2] Acadesine, AICA Riboside, NSC 105823 **MF:** $C_0H_{14}N_4O_5$ **FW:** 258.2 **Purity:** \ge 98% A crystalline solid **Stability:** ≥2 years at -20°C Summary: A selective activator of AMPK; inhibits synthesis of fatty acids and sterols in hepatocytes and insulin-stimulated glucose uptake in adipocytes

5 mg 10 mg 50 mg 100 mg


AM3102

5 mg

[213182-22-0] KDS-5104

MF: C₂₁H₄₁NO₂ **FW:** 339.6 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at -20°C

Summary: An OEA analog that stimulates PPAR α transcriptional activity (EC₅₀ = 100 nM) and prolongs feeding latency in rodents (ED₅₀ = 2.4 mg/kg); as potent as OEA yet resistant to enzymatic hydrolysis; demonstrates weak affinity for the CB1 and CB_2 receptors (K_i = 33 and 26 μ M, respectively)

6-Aminonicotinamide

13 **Biochemicals**

10009315

10010332

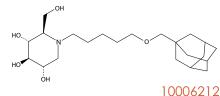
[329-89-5] 6-AN, NSC 21206, SR 4388 **MF:** C₆H₇N₃O **FW:** 137.1 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A well-established inhibitor of the nicotinamide adenine dinucleotide phosphate-dependent enzyme, 6-phosphogluconate dehydrogenase (K_i = 0.46μ M) which interferes with glycolysis; through ATP depletion, synergizes with chemotherapy drugs, like cisplatin, in killing cancer cells (IC₅₀ = 0.5 mM); reduces cardiovascular oxidative injury following ischemia/reperfusion; causes glial neurodegeneration

AMP-Deoxynojirimycin [216758-20-2] Adamantane-pentyl-dNM, AMP-dNM, N-(5-adamantane-1-yl-

methoxy-pentyl)-Deoxynojirimycin

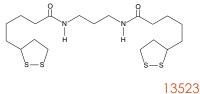

MF: C₂₂H₃₉NO₅ **FW:** 397.6 **Purity:** ≥95% A solution in ethanol **Stability:** ≥1 year at -20°C

Summary: A hydrophobic derivative of deoxynojirimycin that potently inhibits β -glucosidase 2 (IC₅₀ = 0.3 nM), less potently antagonizes glucosylceramide synthase $(IC_{50} = 25 \text{ nM})$, but only poorly inhibits other GCase isoforms; suppresses hapteninduced colitis, enhances insulin sensitivity, and induces SREBP-regulated gene expression and cholesterol synthesis

500 µg 1 mg 5 mg 10 mg

10007686

10010241



AN-7

[691410-93-2]

MF: $C_{19}H_{34}N_{2}O_{2}S_{4}$ **FW:** 450.7 **Purity:** \ge 98% A crystalline solid **Stability:** ≥2 years at -20°C Summary: A more lipophilic analog of α -lipoic acid with enhanced potency to stimulate glucose transport

5 mg 10 mg 50 mg 100 mg

Apelin-13

[217082-58-1] **MF:** C₆₉H₁₁₁N₂₃O₁₆S **FW:** 1,550.8 **Purity:** ≥95% A crystalline solid **Stability:** ≥2 years at -20°C Summary: Endogenous ligand of the APJ receptor, with an EC50 value of 0.37 nM; acts primarily in the periphery and CNS, playing important roles in regulating cardiovascular function, fluid homeostasis, hypertension, and insulin sensitivity Amino Acid Sequence: QRPRLSHKGPMPF

1 mg 5 mg 10 mg 25 mg

Apelin-36

13524

[252642-12-9]

FW: 4,195.9 **Purity:** ≥95%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: Full-length mature apelin peptide; acts primarily in the regulation of cardiovascular function, fluid homeostasis, hypertension, and insulin sensitivity; a less potent APJ agonist than either apelin-17 or apelin-13 (EC₅₀ = 20, 2.5, and 0.37 nM, respectively); potently inhibits HIV-1 entry into cells expressing APJ and CD4 Amino Acid Sequence:

LVQPRGSRNGPGPWQGGRRKFRRQRPRLSHKGPMPF

500 µg 1 mg 5 mg

Thomas G. Brock, Ph.D. | Weight Loss: A New Star is Irisin

Me

What does a good workout have in common with Zeus, the Greek King of the Gods? A recent study suggests that a protein secreted during exercise targets adipose tissue, ultimately improving both obesity and glucose homeostasis. This protein has been named irisin, after the Greek goddess Iris, who acted as the messenger for Zeus. To help her fly between Mount Olympus and the land of mortals, Iris had golden wings (Figure 1). She was also considered the goddess of rainbows and could move along the colored spectrum between the clouds and the earth or sea. By both wings and rainbows, Iris moved swiftly to carry the directions of Zeus to mortals and immortals.

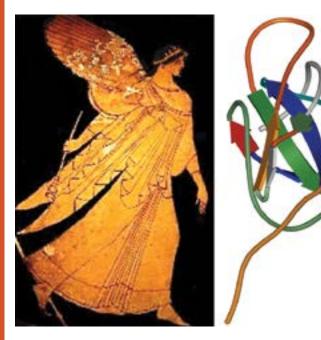


Figure 1. Potential likenesses of Iris (left) and irisin (right)

The hormone irisin looks and acts differently from Iris. This messenger is derived from fibronectin type III domain-containing protein 5 (FNDC5), a membrane-spanning protein of 196 aa. Aside from a short signal peptide, FNDC5 predominantly consists of an extracellular region containing the fibronectin type III (FnIII) domain, separated from a small cytoplasmic region by the helical transmembrane section. Irisin is a 112 aa peptide which includes the 91 aa extracellular FnIII domain, cleaved from the carboxy terminus of FNDC5. FnIII domains commonly consist of a combination of beta strands and random coils, as shown in the resolved structure of the FnIII domain of FNDC3 (1X5X.pdb, Figure 1). They are found in thousands of different proteins, usually serving to mediate interactions with other molecules (proteins, DNA, etc.) or cells. Whatever the mechanism, irisin is, like the goddess Iris, a powerful messenger, sending the signal to determine the function of specific cells.

The Background

Iris and irisin differ somewhat in their beginnings. While Iris was the daughter of Thaumas, a god of the seas, and Elektra, a nymph of the clouds, irisin is induced by PGC1a, also known as peroxisome proliferator-activated receptor- γ (PPAR- γ) coactivator 1- α . As suggested by its name, PGC1 α is a transcriptional coactivator; it enhances the activity of nuclear receptors, like PPAR-y. Predominantly expressed in tissues which are rich in mitochondria, like skeletal muscle, brown adipose tissue, and heart, PGC1a helps

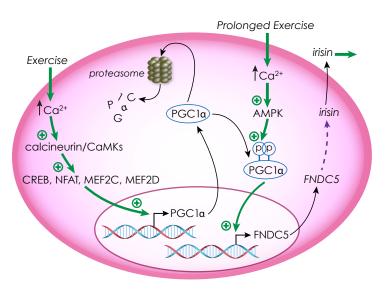
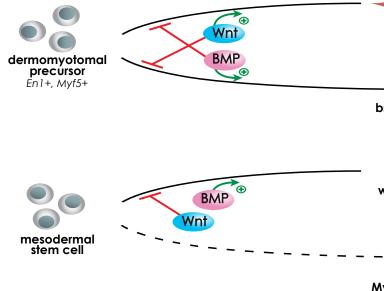


Figure 2. Exercise activates signaling that triggers transient expression of PGC1α. Prolonged exercise drives AMPK activation, phosphorylation of PGC1α, and FNDC5 production, followed by cleavage of FNDC5 to generate secretable irisin.


regulate transcriptional programs that are important for energy homeostasis by enhancing fatty acid oxidation and stimulating mitochondrial biogenesis. Exercise increases the expression of PGC1a in heart and skeletal muscle, stimulating muscle respiratory capacity. More specifically, contraction of skeletal muscle is initiated by motor neuron-induced calcium signaling (Figure 2). Elevated calcium activates the protein phosphatase calcineurin and the calcium/ calmodulin-dependent protein kinases, which then alter the phosphorylation state of several transcription factors and coactivators, including CREB, NFAT, MEF2C, and MEF2D.¹ Exercise rapidly and robustly increases the expression of PGC1a, but this effect is transient as both mRNA and protein levels of PGC1a quickly revert to pre-exercise values.² Exercise also activates AMPactivated protein kinase (AMPK), a master regulator of cellular and organismal metabolism. AMPK directly phosphorylates PGC1a, which is required for PGC1 α -dependent induction of the PGC1 α promoter.³ While brief training produces only a transient rise in PGC1 α , endurance training results in persistent PGC1 α elevation.⁴ Expression of PGC1 α in muscle stimulates an increase in FNDC5, as does exercise alone.⁵ Irisin is then cleaved from the carboxy terminus of FNDC5 and secreted from muscle cells; glycosylated forms of irisin can be detected in the plasma after exercise.⁵ Thus, myocontraction during exercise drives the expression of PGC1 α , which in turn elicits the production of FNDC5 and subsequent secretion of irisin from muscle.

Actions of Note

Perhaps the most interesting things about irisin are its effects and potential applications. One approach to studying the specific effects of elevated levels of irisin in the plasma involves ectopically expressing FNDC5 using adenoviral vectors. When this was done in mice in such a way as to increase plasma levels of irisin 3-4 fold (a modest increase, since basal concentrations are very low), the mRNA levels for UCP1 and Cidea were significantly increased in the subcutaneous fat depot ten days later.⁵ This was accompanied by a clear increase in the number of UCP1-positive, multilocular adipocytes in that particular adipose tissue. This demonstrated that a moderate increase in circulating irisin can induce browning of white adipose tissues in vivo.

To help clarify, all adipose tissues, and, indeed, all adipocytes, are not identical. adipocyte development is promoted by Bmps and blocked by Wnt. The new Fats are deposited in 'depots' or pads in specific sites, which may be identified type of adipocyte can be induced *in vivo* in WAT depots by chronic β-adrenergic generally (subcutaneous or visceral) or more specifically by location (e.g., stimulation or by chronic PPARy-agonist treatment, particularly in the inguinal inguinal (groin), epididymal, perirenal). Each site contains a variety of cell types depot of the mouse.^{8,9} As this cell type is morphologically and functionally in addition to the adipocytes and has unique features regarding its development similar to brown cells but shares a precursor with white adipocytes, it has been and function. More relevant to this article, distinctive types of adipocytes exist. called a 'brite' (brown-in-white) adipocyte.¹⁰ Alternatively, it may be referred White adipocytes, which contain a single large lipid droplet, populate white to as a 'beige' adipocyte or a recruitable or inducible brown adipocyte-like cell. adipose tissue. This most familiar form, the bane of dieters, stores excess energy as More important than the name, this cell type may serve an important role in fat. When other energy sources have been exhausted, white adipocytes hydrolyze regulating energy balance, glucose metabolism, and lipid homeostasis. triglycerides and export fatty acids to be utilized for energy by other cells. Significant Impact Brown adipocytes, on the other hand, burn fatty acids to generate heat through Iris and irisin differ in their actions. Iris affected the course of the Trojan War, uncoupled respiration. Cytologically, these cells are described as 'multilocular', one of the great Greek clashes, by carrying Zeus' advice to the Trojan leader as they store fat in many small subcellular droplets which appear as empty Hector (although the Trojan Horse ultimately led to the fall of Troy). Irisin, compartments in histological cross-sections. Brown adipocytes also contain by way of contrast, may alter the course of diseases like diabetes, obesity, and numerous mitochondria, which provide the distinctive color. The mitochondria other pathologies that benefit from exercise. 'Browned' WAT, produced either of brown adipocytes express a unique uncoupling protein, UCP1, a multi-pass by irisin (from FNDC5-expressing adenovirus) or by transgenic expression of inner membrane protein which uncouples oxidative phosphorylation from ATP Prdm16, protects against diet-induced obesity and diabetes.^{5,11} Whether irisin synthesis so that energy is dissipated in the form of heat. These cells are abundant can be developed into a deliverable therapeutic that mimics exercise-induced in brown adipose tissue (BAT), which is most commonly found in newborns and irisin production remains a major hurdle. hibernating animals. Functional, classical BAT also occurs in a supraclavicular depot in healthy adult humans.^{6,7}

Recently, a new type of adipocyte which expresses UCP1 and metabolizes, rather than stores, lipids has been described. Like brown adipocytes, these new cells have many mitochondria and locular lipid droplets, albeit fewer than true brown cells. However, they differ in their origin. Brown adipocytes are derived from the same precursor as skeletal muscle, termed a dermomyotome, which expresses the homeobox transcription factor Engrailed 1 (En1) and myogenic factor 5 (Myf5)(Figure 3). Differentiation of dermomyotomes to either myocytes or adipocytes is determined by signaling *via* bone morphogenetic protein 7 (Bmp7) and Wnt. White adipocytes, on the other hand, differentiate from a different precursor which lacks Myf5, presumably a mesodermal stem cell. Again,

- Berchtold, M.W., Brinkmeier, H., and Müntener, M. Physiol. Rev. 80(3), 1215-1265 (2000).
- Pilegaard, H., Saltin, B., and Neufer, P.D. J. Physiol. 546, 851-858 (2003)
- Jäger, S., Handschin, C., St.-Pierre, J., et al. Proc. Natl. Acad. Sci. USA 104(29), 12017-12022 (2007).
- Russell, A.P., Feilchenfeldt, J., Schreiber, S., et al. Diabetes 52(12), 2874-2881 (2012).
- Boström, P., Wu, J., Jedrychowski, M.P., et al. Nature 481, 463-468 (2012).
- Zingaretti, M.C., Crosta, F., Vitali, A., et al. FASEB J. 23, 3113-3120 (2009).
- Ouellet, V., Labbé, S.M., Blondin, D.P., et al. J. Clin. Invest. 122(2), 545-552 (2012).
- Guerra, C., Koza, R.A., Yamashita, H., et al. J. Clin. Invest. 102(2), 412-420 (1998).
- Carmona, M.C., Louche, K., Lefebvre, B., et al. Diabetes 56, 2797-2808 (2007). Petrovic, N., Walden, T.B., Shabalina, I.G., et al. J. Biol. Chem. 285(10), 7153-7164 (2010).
- Seale, P., Conroe, H.M., Estall, J., et al. J. Clin. Invest. 121(1), 96-105 (2011).
- Waldén, T.B., Hansen, I.R., Timmons, J.A., et al. Am. J. Physiol. Endocrinol. Metab. 302, E19-E31 (2012).

mvoblasts skeletal myocytes Myf5+, MyoD+ MyoD+, Myogenin+ brown preadipocytes brown adipocytes PRDM16+ $PPAR_{y}+, PRDM16+$ PGC1a+, UCP1+, Zic1* white preadipocytes white adipocytes PPARy+, Tcf21* WAT-resident 'brite' adipocytes Myf5- 'brite' precursors PPARγ+, UCP1+, Hoxc9*

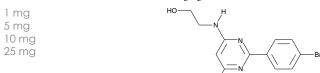
[506-32-1]

MF: C₂₀H₃₂O₂ **FW:** 304.5 **Purity:** ≥98%

A solution in ethanol **Stability:** ≥ 1 year at -20°C

Summary: Keystone essential fatty acid that is converted by COX, LO, and epoxygenase enzymes into more than 150 potent metabolites in species ranging from fungi to plants to mammals

100 mg 250 mg 500 mg


AS-1269574

[330981-72-1]

MF: C₁₃H₁₄BrN₃S **FW:** 308.2 **Purity:** ≥98%

A solution in ethanol **Stability:** ≥ 1 year at -20° C

Summary: An agonist of GPR199 that is effective both in isolated cells and *in vivo*; increases cyclic adenosine monophosphate levels in human embryonic kidney 293 cells transfected with human GPR119 (EC₅₀ = 2.5 μ M) and promotes glucosestimulated insulin secretion in mice (100 mg/kg)


Berberine

[633-65-8] BBR, Umbellatine

MF: C₂₀H₁₈ClNO₄ **FW:** 371.8 **Purity:** ≥95%

A crystalline solid **Stability:** ≥2 years at -20°C

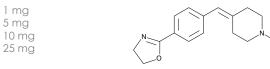
Summary: An akaloid natural product that reduces total cholesterol, LDL cholesterol, and triglycerides in humans and hamsters; enhances LDL-receptor protein and mRNA levels in hepatocytes

[41859-67-0] Benzofibrate, Bezalip, Bezatrol, BM 15075, Difaterol

MF: $C_{10}H_{20}CINO_4$ **FW:** 361.8 **Purity:** \ge 98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A well-established pan PPAR agonist; activates human PPARa, PPARo, and PPARy with EC₅₀ values of 50, 20, and 60 µM, respectively; helps lower LDL cholesterol and triglycerides while raising HDL cholesterol levels


BIBB 515

[156635-05-1]

MF: C₂₂H₂₁ClN₂O₂ **FW:** 380.9 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A selective and potent inhibitor of 2,3-oxidosqualene cyclase *in vivo* with an ED₅₀ value of 0.2-0.5 and 0.36-33.3 mg/kg in rats and mice, respectively; reduced total cholesterol by 19% in normolipemic hamsters at a dose of 55 mg/kg/day for 11 days and 25% in hyperlipemic hamsters at a dose of 148 mg/kg/day for 25 days

C75

90010

10626

10006427

10009145

10010517

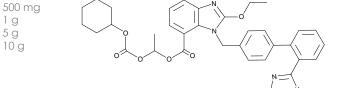
[191282-48-1]

MF: C₁₄H₂₂O₄ **FW:** 254.3 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A stable inhibitor of FAS that leads to profound weight loss and feeding inhibition in both high-fat diet wild type obese and leptin-deficient ob/ob mice

1 mg 5 mg 10 mg 50 mg

•Also Available: (+)-trans-C75 (9000783) (-)-trans-C75 (9000784)

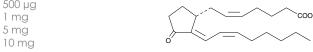

Candesartan cilexetil

[145040-37-5] TCV-116

MF: C₃₃H₃₄N₆O₆ **FW:** 610.7 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A prodrug of the potent, long-acting, and selective angiotensin II receptor type 1 receptor antagonist, candesartan; 4-16 mg/day effectively reduces diastolic blood pressure and has proved useful in the treatment of hypertension and diabetes

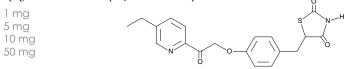


CAY10410

[596104-94-8] 9,10-dihydro-15-deoxy-Δ^{12,14}-PGI₂

MF: C₂₀H₃₀O₃ **FW:** 318.5 **Purity:** ≥98% (isomer mixture)*

Summary: An analog of PGD₂/PGJ₂ with structural modifications intended to give


CAY10415

MF: C₁₉H₁₈N₂O₄ **FW:** 370.4 **Purity:** ≥98%

A crystalline solid **Stability:** ≥ 2 years at -20° C

Summary: A potent, antidiabetic drug of the TZD structural class that lowers blood glucose leves in obese, hyperglycemic, hyperinsulinemic, and insulin-resistant KKA, mice at a dose of 100 mg/kg for four days; increases the rate of insulin-stimulated lipogenesis in 3T3-L1 adipocytes in a dose-dependent manner.

CAY10485

[615264-62-5] 3,4-dihydroxy Hydrocinnamic Acid (L-Aspartic Acid dibenzyl ester) amide **MF:** $C_{27}H_{27}NO_7$ **FW:** 477.1 **Purity:** \ge 98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: An inhibitor of human ACAT-1 and ACAT-2 with an IC_{50} values of 95 and 81 µM, respectively; inhibits copper-mediated oxidation of LDL by 91% at a concentration of 2 µM

*All 5-cis 2-series PGs (those containing a 5,6-double bond) will contain a small amount of the 5-trans isome This isomer is generally undetectable using normal phase silica columns and plates, but may be resolved using RP-HPLC. The purity for all such 2-series PGs excludes the 1-3% trans isomer which will generally be present.

Inhibitors of Lipoprotein Modifying Enzymes

Item No.	Item Name	Target Enzyme	IC ₅₀ values	Sizes
10006482	CAY10485	ACAT-1 and 2	96 µM ACAT-1; 81 µM ACAT-2	5 mg • 10 mg • 50 mg • 100 mg
10006452	CAY10486	ACAT-1 and 2	60 µM (both enzymes)	5 mg • 10 mg • 25 mg • 50 mg
10007875	CAY10499	Hormone Sensitive Lipase	90 nM (human)	1 mg • 5 mg • 10 mg • 25 mg
10006782	Oleic Acid-2,6-diisopropylanilide	ACAT	7 nM	5 mg • 10 mg • 50 mg • 100 mg
10006529	Oleyl Anilide	ACAT	26 µM	5 mg • 10 mg • 50 mg • 100 mg

CAY10486

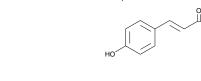
10005270

10489

18590

71748

10006482


10006452

10007875

[615264-52-3] 4-Hydroxycinnamic Acid (L-phenylalanine methyl ester) amide **MF:** $C_{10}H_{10}NO_4$ **FW:** 325.4 **Purity:** $\ge 98\%$

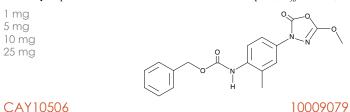
A crystalline solid **Stability:** ≥2 years at -20°C

Summary: An inhibitor of human ACAT-1 and ACAT-2 with an IC₅₀ value of approximately 60 µM for both enzymes; also inhibits copper-mediated oxidation of LDL by about 28% at a concentration of 3 μ M

CAY10499

5 mg

10 mg


50 mg

500 ma

[359714-55-9]

MF: C₁₈H₁₇N₃O₅ **FW:** 355.3 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A potent inhibitor of human hormone sensitive lipase (IC₅₀ = 90 nM)

CAY10506

[292615-75-9]

MF: C₂₀H₂₆N₂O₄S₃ **FW:** 454.6 **Purity:** ≥98% A solution in methyl acetate **Stability:** ≥ 1 year at -20°C

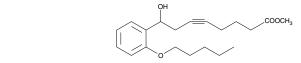
Summary: A hybrid lipoic acid-TZD derivative that transactivates human PPARy with an EC_{50} value of 10 μ M

10009017

CAY10514

1 mg

5 mg


10 mg

50 mg

[868526-38-9] Methyl-8-hydroxy-8-(2-pentyl-oxyphenyl)-oct-5-ynoate **MF:** $C_{20}H_{28}O_4$ **FW:** 332.4 **Purity:** $\ge 98\%$

A solution in methyl acetate **Stability:** \geq 1 year at -20°C

Summary: An aromatic analog of 8(S)-HETE; acts as a dual agonist of PPAR and PPAR γ with EC₅₀ values of 0.17 and 0.64 μ M, respectively

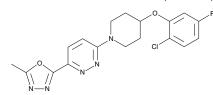
For Laboratory Use Only. Not for human or veterinary diagnostic or therapeutic use. For current US pricing see caymanchem.com.

A solution in methyl acetate **Stability:** ≥ 1 year at -20° C

it PPARy ligand activity and resistance to metabolism

500 µg

CAY10566

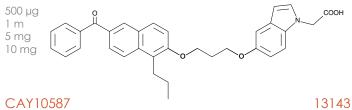

10012562

10008846

[944808-88-2] **MF:** C₁₀H₁₇ClFN₅O₂ **FW:** 389.8 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A potent, selective inhibitor of stearoyl-CoA desaturase 1 that demonstrates IC₅₀ values of 4.5 and 26 nM in mouse and human enzymatic assays, respectively

1 mg 5 mg 10 mg 25 mg

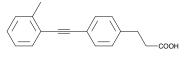

CAY10573

[853652-40-1]

MF: C₃₃H₃₃NO₅ **FW:** 521.6 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A PPAR agonist that displays potent binding at PPAR α , γ , and δ (IC₅₀s = 113, 50, and 223 nM, respectively) and potently transactivates PPAR α , γ , and δ (EC₅₀s = 8, 70, and 500 nM, respectively); demonstrates stronger binding and functional activity for PPARy than rosiglitazone


[1082058-99-8]

MF: C₁₈H₁₆O₂ **FW:** 264.3 **Purity:** ≥98%

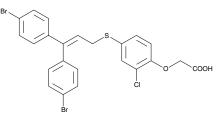
A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A selective FFA1/GPR40 agonist (EC₅₀ = 32nM) that does not exhibit activity on the related FFA receptors FFA2/GPR43 or FFA3/GPR41; increases glucose-stimulated insulin secretion at a concentration of 100 nM in the rat

1 mg 5 mg 10 mg 25 mg

CAY10592

10012536

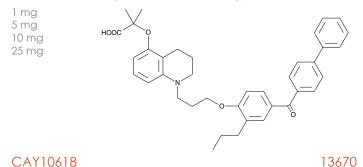

[685139-10-0]

MF: C₂₃H₁₇Br₂ClO₃S **FW:** 568.7 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A selective PPAR δ agonist that acts as a partial agonist (EC₅₀ = 53 nM) in transactivation assays and as a full agonist ($EC_{50} = 30$ nM) in the oxidation of free fatty acid; increases HDL levels, decreases LDL and TG levels, and improves insulin sensitivity in high fat fed ApoB100/CETP-transgenic mice at a dose of 20 mg/kg

1 mg 5 mg 10 mg 50 mg


CAY10599

[1143573-33-4]

MF: C₃₈H₄₁NO₅ **FW:** 591.7 **Purity:** ≥98%

A crystalline solid **Stability:** ≥ 2 years at -20° C

Summary: A PPARy agonist that is 4-fold more potent than rosiglitazone at the PPAR γ receptor demonstrating an EC₅₀ value of 0.05 μ M; shows high selectivity for PPAR γ over PPAR α (EC₅₀ = 3.99 μ M) or PPAR δ (EC₅₀ > 10 μ M)

CAY10618

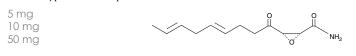
[1202580-59-3] NMPRTase Inhibitor

MF: C₂₇H₂₉N₅O **FW:** 439.6 **Purity:** ≥95%

A solution in methanol **Stability:** ≥1 year at -20°C

Summary: A potent inhibitor of Nampt (IC₅₀ = 3.0 nM); induces cell death in the neuroblastoma cell line SH-SY5Y with an IC₅₀ value of 3.8 nM through a process that appears to involve autophagy

500 µg 1 mg 5 mg 10 mg

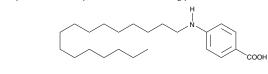

Cerulenin

[17397-89-6]

MF: C₁₂H₁₇NO₃ **FW:** 223.3 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: An irreversible inhibitor of FAS; causes cytotoxicity and apoptosis in human cancer cell lines; causes weight loss and feeding inhibition in both high-fat diet wild type obese and leptin-deficient ob/ob mice


Cetaben

[55986-43-1] Hexadecylamino-p-amino Benzoic Acid **MF:** C₂₃H₃₀NO₂ **FW:** 361.6 **Purity:** ≥98%

A crystalline solid **Stability:** ≥ 2 years at -20° C

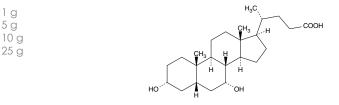
Summary: A unique, PPARa-independent peroxisome proliferator with hypolipidemic activity characterized by reduction in serum triglyceride and cholesterol

5 mg 10 mg 50 mg 100 mg

13282 Chenodeoxycholic Acid

[474-25-9] Anthropodeoxycholic Acid, CDCA, Fluibil, Hekbilin, Kebilis, Ulmenide **MF:** C₂₄H₄₀O₄ **FW:** 392.6 **Purity:** ≥95%

A crystalline solid **Stability:** ≥2 years at -20°C

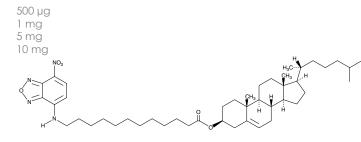

Summary: A bile acid and FXR ligand (EC₅₀ = $13-34 \mu$ M) that is a key regulator of cholesterol homeostasis; exhibits toxicity that is linked to increased glutathione and increased oxidative stress; excess CDCA contributes to liver and intestinal cancers

10011286

13220

13221

11097



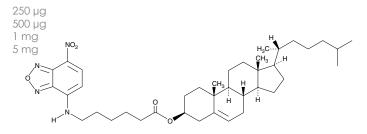
3-dodecanoyl-NBD Cholesterol

3-C12-NBD Cholesterol

MF: C₄₅H₇₀N₄O₅ **FW:** 747.1 **Purity:** ≥98% A solution in ethanol **Stability:** ≥ 1 year at -20°C

Summary: A fluorescently-tagged cholesterol with the hydrophilic NBD fluorophore attached to the hydrophilic end of cholesterol, separated by a 12-carbon spacer; allows the cholesterol to properly orient in membrane bi-layers while the fluorescent tag is presented outside of the bi-layer

3-hexanoyl-NBD Cholesterol

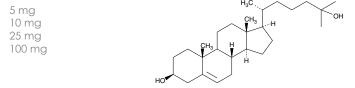

3-C₆-NBD Cholesterol

10005647

10007171

MF: $C_{39}H_{58}N_4O_5$ **FW:** 662.9 **Purity:** \ge 98% A solution in ethanol Stability: ≥1 year at -20°C

Summary: A fluorescently-tagged cholesterol with the hydrophilic NBD fluorophore attached to carbon 3, at the hydrophilic end of cholesterol, separated by a 6-carbon spacer; allows the cholesterol to properly orient in membrane bi-layers while the fluorescent tag is presented outside of the bi-layer

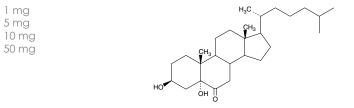

25-hydroxy Cholesterol

[2140-46-7]

MF: C₂₇H₄₆O₂ **FW:** 402.7 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C Summary: A side-chain substituted oxysterol derived from dietary cholesterol that

inhibits the cleavage of SREBPs; has been implicated in a variety of metabolic events including cholesterol homeostasis and atherosclerosis as well as antitumor and immunomodulating activities

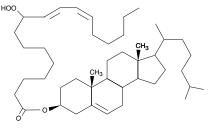

• Also Available: 25-hydroxy Cholesterol-d₆ (11099)

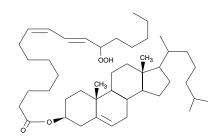
5α-hydroxy-6-keto Cholesterol

[13027-33-3] Cholestane-6-0x0-3β,5α-diol, 6-Ox0-3,5-diol **MF:** $C_{27}H_{46}O_3$ **FW:** 418.7 **Purity:** \ge 98%

A crystalline solid **Stability:** ≥ 2 years at -20° C

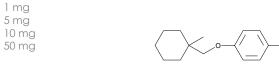
Summary: A major metabolite of cholesterol formed during exposure of lung epithelial cells to ozone; potent inhibitor of cholesterol synthesis in human bronchial epithelial cells (IC₅₀ = 350 nM); exhibits significant cytotoxicity in the low μ M range




48001 Cholesteryl Linoleate Hydroperoxides

MF: $C_{45}H_{76}O_4$ **FW:** 681.1 **Purity:** \ge 98% hydroperoxide content

A solution in ethanol **Stability:** ≥6 months at -80°C Summary: A product derived from the autoxidation of cholesteryl linoleate containing a mixture of racemic 9- and 13-HpODE cholesteryl esters



Ciglitazone

[74772-77-3] ADD 3878, U-63287 **MF:** C₁₈H₂₃NO₃S **FW:** 333.4 **Purity:** ≥98% A crystalline solid **Stability:** ≥1 year at -20°C

Summary: An antidiabetic drug and selective PPAR γ agonist (EC₅₀ = 3.0 μ M); active in vivo as an anti-hyperglycemic agent in the ob/ob mouse model

Clofibrate [637-07-0]

1 g

5 g

10 g

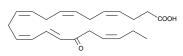
MF: C₁₂H₁₅ClO₃ **FW:** 242.7 **Purity:** ≥98%

A colorless liquid **Stability:** ≥1 year at -20°C

Summary: A PPARa agonist used clinically to treat dyslipidemia and cardiovascular disease; exhibits EC50 values of 50 and 55 µM for mouse and human PPARa, respectively

9000346

17-keto-4(Z),7(Z),10(Z),13(Z),15(E),19(Z)-Docosahexaenoic Acid

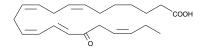

MF: C₂₂H₃₀O₃ **FW:** 342.5 **Purity:** ≥98%

A solution in ethanol **Stability:** ≥6 months at -80°C

Summary: A metabolite of lipoxygenase-mediated oxidation of DHA; activates Nrf2dependent antioxidant gene expression, acts as a PPARy agonist (EC₅₀ -200nM), and inhibits pro-inflammatory cytokine and nitric oxide production at biological concentration ranges (5-25 µM)

25 µg 50 µg 100 µg 250 µg

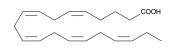
10007601


17-keto-7(Z),10(Z),13(Z),15(E),19(Z) Docosapentaenoic Acid

MF: C₂₂H₃₂O₃ **FW:** 344.5 **Purity:** ≥95%

A solution in ethanol **Stability:** ≥6 months at -80°C

Summary: A metabolite of lipoxygenase-mediated oxidation of DPA; activates Nrf2dependent antioxidant gene expression, acts as a PPARy agonist (EC₅₀ -200nM), and inhibits pro-inflammatory cytokine and nitric oxide production at biological concentration ranges (5-25 µM)


100 µg 250 µg 500 µg 1 mg

Eicosapentaenoic Acid

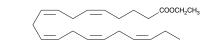
[10417-94-4] EPA, Timnodonic Acid **MF:** C₂₀H₃₀O₂ **FW:** 302.5 **Purity:** ≥98% A solution in ethanol **Stability:** ≥ 1 year at -20° C Summary: An to-3 fatty acid abundantly available in marine organisms

50 ma 100 mg 250 mg 500 mg

Eicosapentaenoic Acid ethyl ester

[86227-47-6] EPA-EE, EPA ethyl ester

MF: C₂₂H₃₄O₂ **FW:** 330.5 **Purity:** ≥98%


A solution in ethanol **Stability:** ≥ 1 year at -20° C

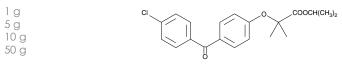
Summary: A stabilized ethyl ester form of this ω-3 C20:5 polyunsaturated fatty acid; dietary EPA-EE in rats increases fatty acid β-oxidation enzyme levels, down-regulates lipogenic genes, and decreases plasma cholesterol and triglyceride levels; blocks induced insulin resistance and corrects changes in adiponectin levels and TNF- $\!\alpha$ expression in rats fed a high-fat diet

10 mg 50 mg 100 mg 500 mg

71730

10956

Fenofibrate



[49562-28-9]

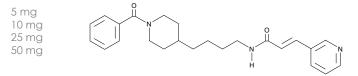
MF: C₂₀H₂₁ClO₄ **FW:** 360.8 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A PPARa agonist and hypolipidemic drug used clinically to treat dyslipidemia and cardiovascular disease; exhibits EC50 values of 18 and 30 µM for mouse and human PPARα, respectively

9000347

90110


FK-866

[658084-64-1] K 22.175

MF: $C_{24}H_{29}N_3O_2$ **FW:** 391.5 **Purity:** \ge 98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A highly specific non-competitive inhibitor of Nampt (K_i = 0.4 nM), causing gradual NAD⁺ depletion; directs delayed cell death by apoptosis in HepG2 cells (IC₅₀ = $\sim 1 \text{ nM}$)

Fluvastatin (sodium salt)

[93957-55-2]

MF: $C_{24}H_{25}FNO_4 \bullet Na$ **FW:** 433.5 **Purity:** \ge 98% A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A potent, competitive inhibitor of HMG-CoA reductase ($K_i = 0.3 \text{ nM}$)

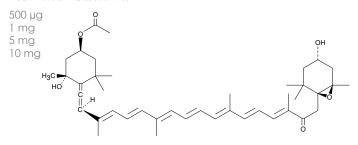
10 mg 25 mg 50 mg 100 mg

FMOC-L-Leucine

[35661-60-0] FMOC-Leu, NPC 15199, NSC 334290 **MF:** C₂₁H₂₃NO₄ **FW:** 353.4 **Purity:** ≥98%

A crystalline solid **Stability:** ≥ 2 years at room temperature

Summary: A partial agonist of PPARy; activates PPARy with a lower potency (K_i = 15 μ M versus 0.035 μ M) but a similar maximal efficacy compared to rosiglitazone; improves insulin resistance in normal, diet-induced glucose-intolerant, and in diabetic *db/db* mice, yet reduced adipogenic activity


Fucoxanthin

[3351-86-8] α-Carotene

MF: C₄₂H₅₈O₆ **FW:** 658.9 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A carotenoid that occurs naturally in certain algae; significantly reduces abdominal white adipose tissue (WAT) in mice and rats when included in their diet; increases the amount of UCP1 protein in WAT; decreases blood glucose and plasma insulin levels in diabetic mice

Cholesterol Synthesis Inhibitors

Item No.	Item Name	Target Enzyme	K _i	
10010337	Fluvastatin (sodium salt)	HMG-CoA Reductase	0.3 nM	
10010338	Lovastatin	HMG-CoA Reductase	0.6 nM	
10010339	Lovastatin Hydroxy Acid (sodium salt)	HMG-CoA Reductase	0.6 nM	
10010340	Mevastatin	HMG-CoA Reductase	1 nM	
10010343	Pravastatin (sodium salt)	HMG-CoA Reductase	2.3 nM	
10006415	Ro 48-8071	Oxidosqualene Cyclase	IC ₅₀ = 1.5-6.5 nM	
10010334	Simvastatin	HMG-CoA Reductase	0.12 nM	

GSK264220A

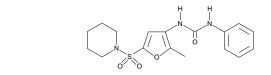
1 mg

5 mg

10 mg

25 mg

13287


10010337

10004888

13068

[685506-42-7]

MF: C₁₇H₂₁N₃O₄S **FW:** 363.4 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at -20°C Summary: A potent inhibitor of endothelial lipase (IC₅₀ = 16 nM)

(E)-Guggulsterone

[39025-24-6]

MF: C₂₁H₂₈O₂ FW: 312.5 Purity: ≥98%

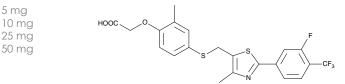
A crystalline solid **Stability:** ≥2 years at -20°C Summary: A competitive antagonist of FXR (IC₅₀ = 15 μ M) that inhibits CDCAinduced transactivation of FXR; lowers LDL cholesterol and triglyceride levels in rodents fed a high cholesterol diet

(Z)-Guggulsterone

[39025-23-5]

A crystalline solid **Stability:** ≥2 years at -20°C

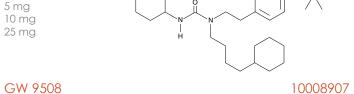
Summary: A competitive antagonist of FXR (IC₅₀ = 17 μ M) that lowers LDL cholesterol and triglyceride levels in rodents fed a high cholesterol diet; demonstrates antitumor-promoting effects in human multiple myeloma and DU145 human prostate cancer cells



[317318-84-6]

MF: $C_{21}H_{17}F_4NO_3S_7$ **FW:** 471.5 **Purity:** \ge 98% A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A selective PPAR δ agonist (EC₅₀ = 1.1 nM) that exhibits 1,000-fold selectivity over the other human PPAR subtypes

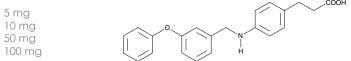

GW 7647

[265129-71-3]

MF: C₂₉H₄₆N₂O₃S **FW:** 502.8 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A potent, selective PPARa agonist; activates human PPARa, PPARy, and

PPAR δ with EC₅₀ values of 0.006, 1.1, and 6.2 μ M, respectively 1 mg

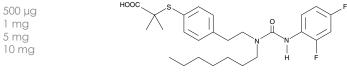


[885101-89-3]

MF: C₂₂H₂₁NO₃ **FW:** 347.4 **Purity:** ≥98%

A crystalline solid **Stability:** ≥1 year at -20°C

Summary: A small-molecule agonist of GPR40 (EC₅₀ = 47 nM) and GPR120 $(EC_{50} = 2.2 \mu M)$, GPCRs that are activated by medium and long-chain fatty acids; potentiates glucose-stimulated insulin secretion and the KCl-mediated increase in insulin secretion in MIN6 cells

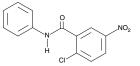

GW 9578

[247923-29-1]

MF: C₂₆H₃₄F₂N₂O₃S **FW:** 492.6 **Purity:** ≥98%

A solution in methyl acetate **Stability:** ≥ 1 year at -20°C

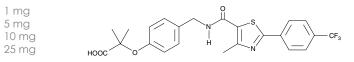
Summary: A potent, selective PPARa agonist that activates mouse and human PPAR α with EC₅₀ values of 0.005 and 0.05 μ M, respectively; 0.2 mg/kg given orally once daily for three days decreased serum total LDL cholesterol 40-60% in male Sprague-Dawely rats


GW 9662

[22978-25-2] **MF:** C₁₃H₉ClN₂O₃ **FW:** 276.7 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A potent PPARy antagonist; blocks the PPARy-induced differentiation of monocytes to osteoclasts by >90% at a dose of 0.1 μ M

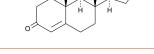

1 mg 5 mg 10 mg 50 mg

• Also Available: GW 9662-d₅ (9000497)

[622402-22-6] **MF:** $C_{12}H_{21}F_{2}N_{2}O_{4}S$ **FW:** 478.5 **Purity:** \ge 98% A crystalline solid **Stability:** ≥2 years at -20°C Summary: A potent and selective PPAR α agonist (EC₅₀ = 4 nM) that is at least 500-fold selective for PPAR α over PPAR γ and PPAR δ

For current European or other overseas pricing, see caymaneurope.com or contact your local distributor.

71800


10006798

10011296

13009

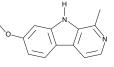
10010324

10006084

10010375

Harmine

10008613

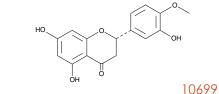

10011211

70785

[442-51-3] **MF:** C₁₃H₁₂N₂O **FW:** 212.1 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A unique regulator of PPARy expression that acts by inhibiting the Wnt signaling pathway in a cell-specific manner

250 mg 500 mg 1 g 5 g

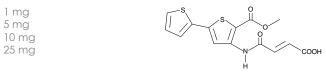

Hesperetin

[520-33-2] **MF:** $C_{16}H_{14}O_6$ **FW:** 302.3 **Purity:** \ge 98%

A crystalline solid **Stability:** ≥2 years at room temperature

Summary: A citrus flavonoid that lowers plasma cholesterol; reduces the transcription of ACAT-2 mRNA in HepG2 cells and reduces ApoB protein synthesis (EC₅₀ ~ 50 μM)

25 g 50 g 100 g 500 g


HTS 01037

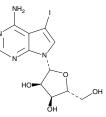
[682741-29-3]

MF: C₁₄H₁₁NO₅S₂ **FW:** 337.4 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A high-affinity ligand of A-FABP/aP2 (K_i = 0.67 µM); shown to antagonize the protein-protein interaction of A-FABP/aP2 with hormone sensitive lipase in cultured C8PA lipocytes; presumably competes with fatty acids for functional binding in the ligand-binding cavity of A-FABP/aP2

5-lodotubercidin


[24386-93-4] Itu, NSC 113939

MF: C₁₁H₁₃IN₄O₄ **FW:** 392.2 **Purity:** ≥95%

A solution in ethanol **Stability:** ≥1 year at -20°C

Summary: Initiates glycogen synthesis in hepatocytes by causing inactivation of phosphorylase α and activation of glycogen synthase α (maximal effects with ~20 uM Itu)

100 µg 250 µg 1 mg 5 mg

JMV3002

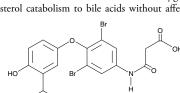
[925239-03-8]

MF: C₃₅H₃₄N₆O₃ **FW:** 586.7 **Purity:** ≥98%

A solution in methyl acetate **Stability:** ≥ 1 year at -20°C

Summary: A potent ghrelin receptor antagonist ($IC_{50} = 1.1$ nM) that inhibits hexarelin-stimulated food intake by as much as 98% in rats at 80 µg/kg; does not affect growth hormone release when tested in infant rats

100 µg 500 µg 1 mg 5 mg

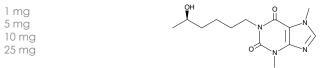

KB2115

[355129-15-6]

MF: C₁₈H₁₇Br₂NO₅ **FW:** 487.1 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A synthetic thyroid hormone mimetic that lowers total and LDL cholesterol up to 40% when administered to humans at a dose of 50-200 µg once daily for 14 days; stimulates cholesterol catabolism to bile acids without affecting cholesterol synthesis

500 µg 1 mg 5 mg 10 mg


(R)-Lisofylline

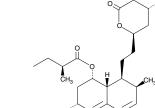
[100324-81-0] (-)-Lisofylline, (R)-LSF

MF: $C_{13}H_{20}N_4O_3$ **FW:** 280.3 **Purity:** \ge 98%

A crystalline solid **Stability:** ≥2 years at -20°C

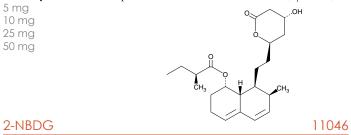
Summary: A potent inhibitor of the generation of phosphatidic acid (IC₅₀ = 0.6 µM) from cytokine-activated lysophosphatidic acyl transferase (LPAAT), which has been shown to protect mice from endotoxic shock; suppresses the production of the proinflammatory cytokine IFN-y, inhibits IL-12 signaling, and enhances glucose-stimulated β -cell insulin secretion; reduces the onset of diabetes in a nonobese diabetic mouse model

Lovastatin


[75330-75-5] **MF:** C₂₄H₃₆O₅ **FW:** 404.5 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

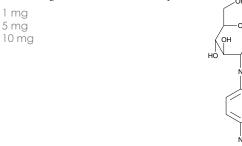
Summary: A potent, competitive inhibitor of HMG-CoA reductase ($K_i = 0.6 \text{ nM}$)



• Also Available: Lovastatin Hydroxy Acid (sodium salt) (10010339)

10012699 Mevastatin

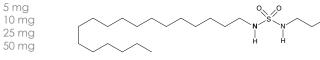
[73573-88-3] Compactin, CS 500, L-637,312, ML 236B, NSC 281245, Statin I **MF:** C₂₃H₃₄O₅ **FW**: 390.5 **Purity:** ≥98%


A crystalline solid **Stability:** ≥ 2 years at -20° C Summary: A reversible, competitive HMG-CoA reductase inhibitor (K_i = 1 nM)

[186689-07-6] NBD-Glucose

MF: $C_{12}H_{14}N_4O_8$ **FW:** 342.3 **Purity:** \geq 98% (mixture of α and β) A crystalline solid **Stability:** ≥2 years at -20°C

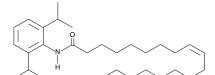
Summary: A fluorescently-labeled deoxyglucose analog that is used primarily to directly monitor glucose uptake by living cells and tissues; also used as a topical contrast reagent for the detection of neoplasia



N-Octadecyl-N'-propyl-sulfamide

MF: C₂₁H₄₆N₂O₂S **FW:** 390.7 **Purity:** ≥95%

A crystalline solid **Stability:** ≥ 2 years at -20° C Summary: A selective and potent activator of PPARa with an EC50 value of


100 nM; induces satiety, decreases food-intake, reduces body weight, and lowers plasma triglyceride concentration in free-feeding Wistar and obese Zucker (fa/fa) rats

Oleic Acid-2,6-diisopropylanilide

[140112-65-8] **MF:** C₃₀H₅₁NO **FW:** 441.7 **Purity:** ≥98% A solution in methyl acetate **Stability:** ≥ 1 year at -20°C Summary: An inhibitor of ACAT with an IC₅₀ value of 7 nM

Oleoyl Ethanolamide

[111-58-0] OEA, Oleic Acid Ethanolamide **MF:** C₂₀H₃₉NO₂ **FW:** 325.5 **Purity:** ≥98%

A crystalline solid **Stability:** ≥1 year at -20°C

Summary: An analog of AEA found in brain tissue and chocolate; accumulates rapidly in infarcted tissue; an endogenous, potent PPAR α agonist (EC₅₀ = 120 nM); suppresses food intake and reduces weight gain in rats

5 mg

10 mg

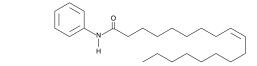
50 mg

100 mg

10010340

10009661

10006782

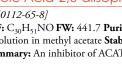

•Also Available: Oleoyl Ethanolamide-d, (10007823) **Oleovl Ethanolamide-d**₄ (9000552)

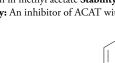
Olevl Anilide

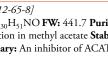
10006529

90265

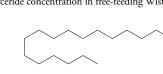
[5429-85-6] OA, Oleic Acid Anilide **MF:** C₂₄H₃₉NO **FW:** 357.6 **Purity:** ≥95% A crystalline solid **Stability:** ≥ 2 years at -20° C Summary: A weak ACAT inhibitor with an IC_{50} value of 26 μ M


PPAR Ligands

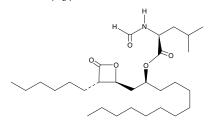

Item No.	Product Name	Target	Mode of Action	Effective Concentration	Sizes
13452	AM3102	ΡΡΑΒα	Agonist	EC ₅₀ = 100 nM	5 mg • 10 mg • 25 mg • 50 mg
60924	Azelaoyl PAF	ΡΡΑΒγ	Agonist	~ Equal to Rosiglitazone	500 µg • 1 mg • 5 mg • 10 mg
10009145	Bezafibrate	pan PPAR	Agonist	EC ₅₀ = 20-60 μM	500 mg • 1 g • 5 g • 10 g
10009017	CAY10514	$PPAR\alpha$ $PPAR\gamma$	Dual Agonist	$EC_{50} = 0.173 $ μM (PPARα) $EC_{50} = 0.642 $ μM (PPARγ)	1 mg • 5 mg • 10 mg • 50 mg
10008846	CAY10573	pan-PPAR	Agonist	IC ₅₀ = 50-225 μM	500 µg • 1 mg • 5 mg • 10 mg
10012536	CAY10592	ΡΡΑΒδ	Agonist	EC ₅₀ = 53 nM (rat)	1 mg • 5 mg • 10 mg • 50 mg
13282	CAY10599	ΡΡΑΒδ	Agonist	EC ₅₀ = 50 nM	1 mg • 5 mg • 10 mg • 25 mg
71730	Ciglitazone	ΡΡΑΒγ	Agonist	EC ₅₀ = 3 µM	1 mg • 5 mg • 10 mg • 50 mg
10956	Clofibrate	ΡΡΑΒα	Agonist	EC ₅₀ = 55 μM (human)	500 mg • 1 g • 5 g • 10 g
10005368	Fenofibrate	ΡΡΑΒα	Agonist	EC ₅₀ = 30 μM (human)	1 g • 5 g • 10 g • 50 g
10006798	GW 0742	ΡΡΑΒδ	Agonist	EC ₅₀ = 1.1 nM	5 mg • 10 mg • 25 mg • 50 mg
10008613	GW 7647	ΡΡΑΒα	Agonist	EC ₅₀ = 6 nM (human)	1 mg • 5 mg • 10 mg • 25 mg
10011211	GW 9578	ΡΡΑΒα	Agonist	EC ₅₀ = 50 nM (human)	500 µg • 1 mg • 5 mg • 10 mg
70785	GW 9662	ΡΡΑΒγ	Antagonist	Blocks differentiation of monocytes to osteoclasts by >90% at a dose of 0.1 μM	1 mg • 5 mg • 10 mg • 50 mg
10009880	GW 590735	ΡΡΑΒα	Agonist	EC ₅₀ = 4 nM	1 mg • 5 mg • 10 mg • 25 mg
10009661	N-Octadecyl-N'- propyl-sulfamide	ΡΡΑΠα	Agonist	EC ₅₀ = 100 nM	5 mg • 10 mg • 25 mg • 50 mg
90265	Oleoyl Ethanolamide	ΡΡΑΒα	Agonist	EC ₅₀ = 120 nM	5 mg • 10 mg • 50 mg • 100 mg
18570	15-deoxy-D ^{12,14} - Prostaglandin J ₂	ΡΡΑΠδ	Agonist	EC ₅₀ = 7 μM	100 μg • 500 μg • 1 mg • 5 mg
71740	Rosiglitazone	ΡΡΑΒγ	Agonist	K _d = 43 nM	5 mg • 10 mg • 50 mg • 100 mg
10026	T0070907	ΡΡΑΒγ	Antagonist	$IC_{50} = 1$ nM for inhibition of Rosiglitazone binding	1 mg • 5 mg • 10 mg • 50 mg
71750	Troglitazone	ΡΡΑΒγ	Agonist	EC ₅₀ = 0.55 μM (human)	5 mg • 10 mg • 50 mg • 100 mg
70730	Wy 14643	PPARα PPARδ	Agonist	Species dependent (PPAR α : 0.1 - 10 μ M)	5 mg • 10 mg • 50 mg • 250 mg



10011054


13616

10005426


Orlistat

[96829-58-2] Alli, Tetrahydrolipstatin, Xenical ™ **MF**: C₂₉H₅₃NO₅ **FW**: 495.7 **Purity**: ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: An anti-obesity drug that inhibits gastric, pancreatic, and carboxyl ester lipases, preventing hydrolysis of triglycerides to free fatty acids and monoglycerides; potently inhibits human recombinant diacylglycerol lipase- α (IC₅₀ = 60 nM) and at 1 µM inhibits the formation of 2-arachidonoyl glycerol in intact cells

Palmitoleic Acid

1000987

[373-49-9] 9-cis-Hexadecenoic Acid, Palmitoleate, n-7 Palmitoleate, cis-Palmitoleic Acia **MF:** C₁₆H₃₀O₂ **FW:** 254.4 **Purity:** ≥99%

A neat oil **Stability:** ≥1 year at -20°C

Summary: An ω -7 monounsaturated fatty acid that is a common constituent of the triglycerides of human adipose tissue; raises LDL cholesterol and lowers HDL cholesterol much like that of a saturated fatty acid, even when dietary intake of cholesterol is maintained at a low level

100 mg 500 ma 1 g

5 g

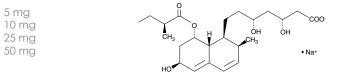
• Also Available: Palmitoleic Acid-d₁₄ (9000431)

Palmitoleic Acid ethyl ester (10008204)

Cayman Chemical caymanchem.com **Biochemicals**

PPARy Ligand Pack

Purity: $\ge 98\%$ **Stability:** ≥ 1 year at -20° C


Summary: Contains ciglitazone, GW 9662, 15-deoxy- $\Delta^{12,14}$ -PGJ₂, rosiglitazone, and troglitazone

1 ea

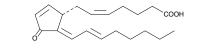
10010343 Pravastatin (sodium salt) [81131-70-6] **MF:** C₂₃H₃₅O₇ • Na **FW:** 446.5 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A potent, competitive inhibitor of HMG-CoA reductase (K_i = 2.3 nM)

15-deoxy- $\Delta^{12,14}$ -Prostaglandin J₂

[87893-55-8]


MF: C₂₀H₂₈O₃ **FW:** 316.4 **Purity:** ≥97%*

A solution in methyl acetate **Stability:** ≥ 1 year at -20°C

Summary: A metabolite of PGD, formed by the elimination of two molecules of water; binds to PPAR γ with an EC₅₀ value of 2 μ M

100 µg 500 µg 1 mg

5 mg

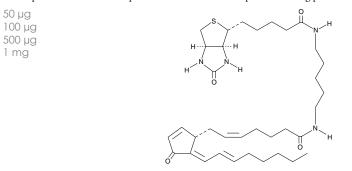
•Also Available: 15-deoxy- $\Delta^{12,14}$ -Prostaglandin J₂-d₄ (318570) 15-deoxy- $\Delta^{12,14}$ -Prostaglandin J₂-2-glycerol ester (10010132) 15-deoxy- $\Delta^{12,14}$ -Prostaglandin J_2 Lipid Maps MS Standard (10007235) 15-deoxy- $\Delta^{12,14}$ -Prostaglandin J₂-Quant-PAK (10006850)

15-deoxy- $\Delta^{12,14}$ -Prostaalandin J₂

[87893-55-8]

MF: C₂₀H₂₈O₃ **FW:** 316.4 **Purity:** ≥98% (isomer mixture)*

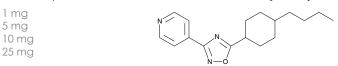
A solution in methyl acetate **Stability:** ≥1 year at -20°C


Summary: Formulation containing 90-95% of the trans, trans- $\Delta^{12,14}$ isomer, and 5-10% of other double bond isomers which have similar PPARy ligand activity (see Item No. 18570)

15-deoxy- $\Delta^{12,14}$ -Prostaglandin J₂-biotin

- **MF:** C₃₅H₅₄N₄O₄S **FW:** 626.9 **Purity:** ≥98%*
- A solution in ethanol **Stability:** ≥1 year at -20°C

Summary: An affinity probe designed to allow 15-deoxy- $\Delta^{12,14}$ -PGJ₂ to be detected in complexes with nuclear receptors and/or nucleic acid or protein binding partners


*All 5-cis 2-series PGs (those containing a 5,6-double bond) will contain a small amount of the 5-trans isomer This isomer is generally undetectable using normal phase silica columns and plates, but may be resolved using RP-HPLC. The purity for all such 2-series PGs excludes the 1-3% trans isomer which will generally be present.

71000 PSN375963

[388575-52-8]

MF: C₁₇H₂₃N₃O **FW:** 285.4 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at -20°C

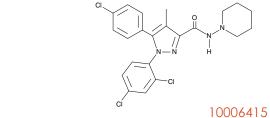
Summary: A selective agonist of GPR119, a GPCR that mediates a reduction in food intake and body weight gain by oleoyl ethanolamide in rats; exhibits EC50 values of 8.4 and 7.9 µM at recombinant mouse and human GPR119 receptors, respectively

PSN632408

[857652-30-3]

MF: C₁₈H₂₄N₄O₄ **FW:** 360.4 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A selective agonist of GPR119, a GPCR that mediates a reduction in food intake and body weight gain by oleoyl ethanolamide in rats; exhibits EC₅₀ values of 5.6 and 7.9 µM at recombinant mouse and human GPR119 receptors, respectively


18570

18570.1

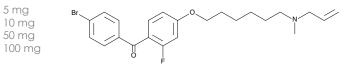
10141

Rimonabant

[168273-06-1] SR141716 **MF:** C₂₂H₂₁Cl₃N₄O **FW:** 463.8 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at -20°C Summary: A selective CB₁ receptor inverse agonist (K_i = 1.8 nM) 5 mg

Ro 48-8071

10 mg

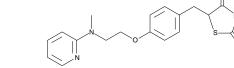

25 mg

50 mg

[161582-11-2]

MF: C₂₃H₂₇BrFNO₂ FW: 448.4 Purity: ≥98% A solution in methyl acetate **Stability:** ≥1 year at -20°C

Summary: An inhibitor of oxidosqualene cyclase (OSC) that has LDL cholesterol lowering activity; inhibits OSC from human liver microsomes and HepG₂ cells with IC₅₀ values of approximately 6.5 and 1.5 nM, respectively

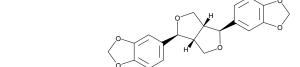


Rosiglitazone

[122320-73-4] BRL 49653 **MF:** C₁₈H₁₉N₃O₃S **FW:** 357.4 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at -20°C

Summary: A potent and selective PPARy agonist; binds to the PPARy ligand-binding domain with a K_d value of 43 nM

5 mg 10 mg 50 mg 100 mg


•Also Available: Rosiglitazone-d₅ Maleate (10011343) Rosiglitazone (potassium salt) (71742)

A crystalline solid **Stability:** ≥ 1 year at -20°C

Summary: A non-competitive inhibitor of Δ^5 -desaturase; inhibits the conversion of

DGLA to arachidonic acid with a K_i value of 155 µM in rat liver microsomes 1 mg

Simvastatin

5 mg

10 mg

25 mg

50 mg

5 g

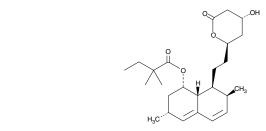
10 g

10008594

9000484

71740

5 mg


10 mg

50 mg

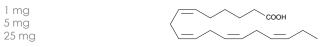
10010344

[79902-63-9] MK 733 **MF:** C₂₅H₃₈O₅ **FW:** 418.6 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at -20°C

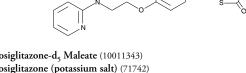
Summary: A potent, competitive inhibitor of HMG-CoA reductase (K_i = 0.12 nM)

• Also Available: Simvastatin (sodium salt) (10010345)

10011298 Stearic Acid

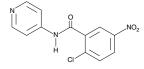

[57-11-4] **MF:** C₁₈H₃₄O₂ **FW:** 284.5 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at -20°C Summary: A long-chain saturated fatty acid that does not affect plasma total

cholesterol or LDL-cholesterol but may reduce HDL-cholesterol 500 mg l g


• Also Available: Stearic Acid ethyl ester (10008196)

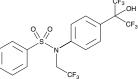
90320 Stearidonic Acid

[20290-75-9] Moroctic Acid **MF:** C₁₀H₂₀O₂ **FW:** 276.4 **Purity:** ≥98% A solution in ethanol **Stability:** ≥1 year at -20°C Summary: An 18-carbon, ω -3 fatty acid which is a dietary precursor to EPA and DHA present in small amounts in seed oils, especially black currant seed oil


• Also Available: Stearidonic Acid ethyl ester (10006856) Stearidonic Acid methyl ester (10005000) Stearidonoyl Glycine (9000327)

T0070907

[313516-66-4] **MF:** C₁₂H₈ClN₃O₃ **FW:** 277.7 **Purity:** ≥98% A crystalline solid **Stability:** ≥1 year at -20°C Summary: A potent and selective PPARy antagonist with an apparent IC₅₀ value of 1 nM for the human receptor


1 mg 5 mg 10 mg 50 mg

T0901317

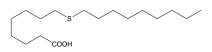
[293754-55-9] **MF:** C₁₇H₁₂F₉NO₃S **FW:** 481.3 **Purity:** ≥98% A crystalline solid **Stability:** ≥1 year at -20°C Summary: A potent and selective agonist for both LXR α and LXR β (EC₅₀ = 50 nM) 5 mg

10 mg 50 mg 100 ma

9-Thiastearic Acid

10007417

90500


[106689-24-1]

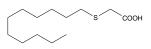
MF: C₁₇H₃₄O₂S **FW:** 472.3 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: Inhibits desaturation of radiolabeled stearate to oleate in rat hepatocytes and hepatoma cells (>80% at a concentration of 25 µg)

5 mg 10 mg 50 mg 100 mg

3-Thiatetradecanoic Acid


[116296-31-2] 3-TDA

MF: C₁₃H₂₆O₂S **FW:** 246.4 **Purity:** ≥98%

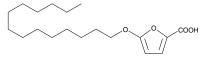
A crystalline solid **Stability:** ≥2 years at -20°C

Summary: An analog of myristic acid wherein the C-3 carbon has been replaced by sulfur in a thioether linkage; acts as a PPAR ligand, increases fatty acid oxidation, and lowers plasma lipid levels

1 mg 5 mg 10 mg 50 mg

TOFA

10005263

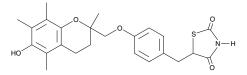

71750

[54857-86-2] RMI 14514, 5-(Tetradecyloxy)-2-furoic Acid **MF:** C₁₉H₃₂O₄ **FW:** 324.5 **Purity:** ≥98%

A crystalline solid **Stability:** ≥2 years at -20°C

Summary: An inhibitor of fatty acid synthesis that blocks the synthesis of malonyl-CoA by acetyl-CoA carboxylase

5 mg 10 mg 50 mg 100 mg



Troglitazone

[97322-87-7] ResulinTM

MF: C₂₄H₂₇NO₅S **FW:** 441.5 **Purity:** ≥98% A crystalline solid **Stability:** ≥1 year at -20°C Summary: A selective PPAR γ agonist with EC₅₀ values of 0.55 and 0.78 μ M for transactivation of human and mouse PPARy, respectively

5 mg 10 mg 50 mg 100 mg

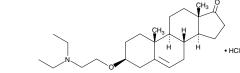
10026

U-18666A

10009085

[3039-71-2]

MF: C₂₄H₄₁NO₂ • HCl **FW:** 412.1 **Purity:** ≥95%

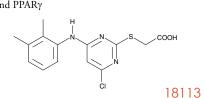

A crystalline solid **Stability:** ≥ 2 years at -20° C

Summary: A cell permeable drug that inhibits cholesterol trafficking from late endosomes/lysosomes to the endoplasmic reticulum, but not to the plasma membrane

5 mg 10 mg

25 mg

50 mg


Wy 14643

70730

13576

[50892-23-4] Pirinixic Acid **MF:** $C_{14}H_{14}ClN_3O_2S$ **FW:** 323.8 **Purity:** ≥98% A crystalline solid **Stability:** ≥2 years at room temperature **Summary:** An agonist of PPAR α and PPAR γ

5 mg 10 mg 50 mg 250 mg

YM-53601

[182959-33-7]

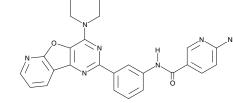
MF: $C_{21}H_{21}FN_2O \bullet HCl$ **FW:** 372.9 **Purity:** \ge 98% A crystalline solid **Stability:** \ge 2 years at -20°C

Summary: Inhibits squalene synthase activity in rat hepatic microsomes and human HepG2 cells (IC_{50} = 90 and 79 nM, respectively); inhibits cholesterol biosynthesis in rats, reducing both cholesterol and triglyceride levels in plasma

500 µg 1 mg 5 mg 10 mg н о

YM-201636

[371942-69-7]


MF: C₂₅H₂₁N₇O₃ **FW:** 467.5 **Purity:** ≥95%

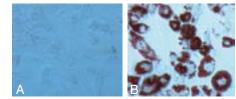
A crystalline solid **Stability:** ≥ 2 years at -20° C

Summary: A cell-permeable and selective inhibitor of PIKfyve ($IC_{50} = 33$ nM); reversibly impairs endosomal trafficking in NIH3T3 cells and blocks retroviral exit by budding from cells; inhibits basal and insulin-activated 2-deoxyglucose uptake ($IC_{50} = 54$ nM) in adipocytes

1 mg 5 mg

10 mg 25 mg

KITS

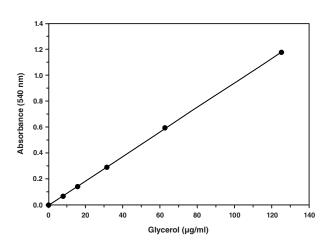

Adipogenesis Assay Kit

10006908

Stability: ≥1 year at -20°C

Summary: Cayman's Adipogenesis Assay provides the reagents required for studying the induction and inhibition of adipogenesis in the established 3T3-L1 model. This kit can also be used to screen drug candidates involved in adipogenesis. The classic Oil Red O staining for lipid droplets is used in this kit as an indicator of the degree of adipogenesis, and can be quantified with a plate reader after the dye is conveniently extracted from the lipid droplet.

1 ea


Panel A: Non-differentiated 3T3-L1 cells were not stained by Oil Red O Solution. Panel B: More than 80% of preadipocytes were differentiated four days after weaning the cells from induction media to insulin media. Different degrees of lipid droplet accumulation in the differentiated cells can be visualized by Oil Red O Solution staining.

Adipolysis Assay Kit

10009381

Stability: ≥1 year at -20°C Summary: Cayman's Adipolysis Assay provides an easy to use tool for studying the hydrolysis of triglycerides to FFAs and glycerol in differentiated 3T3-L1 cells. This kit will allow investigators to screen compounds involved in lipid storage and metabolism. Isoproterenol is included in the kit as a positive control for screening pharmaceuticals that regulate FFA release from adipocytes.

1 ea

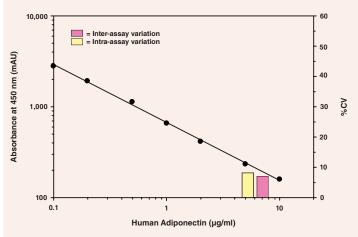
Adiponectin

Adiponectin, also known as Acpr30 and GPB-28, is a physiologically active protein which is specifically and highly expressed from adipose cells. Adipose tissue-expressed levels of adiponectin are inversely related to the degree of obesity and are correlated with insulin resistant states such as those found in obesity and type II diabetes mellitus. Adiponectin increases insulin sensitivity and decreases plasma glucose by increasing fat oxidation. The assay kits listed below are sensitive methods for the quantification of adiponectin from human or mouse samples.

Adiponectin (human) EIA Kit[†]

500641

Acpr30, AdipoQ, GBP-28


Stability: ≥6 months at 4°C Limit of Detection: 0.7 µg/ml

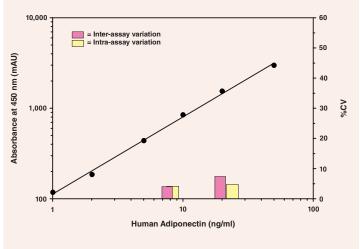
Summary: This EIA is based on the competition between free adiponectin and bound adiponectin (coated to the wells of a 96-well plate) for a fixed quantity of HRP-labeled adiponectin antibody.

Specificity:

For a full specificity profile, please go to www.caymanchem.com

Adiponectin (human) EIA Kit (HS)†

10007619


Acpr30, AdipoQ, GBP-28

Stability: ≥6 months at 4°C Limit of Detection: 0.5 ng/ml

Summary: This EIA is based on a double antibody sandwich technique that is applicable to the quantification of both low molecular weight and high molecular weight polymers of adiponectin, but not adiponectin trimers. **Specificity:**

For a full specificity profile, please go to www.caymanchem.com

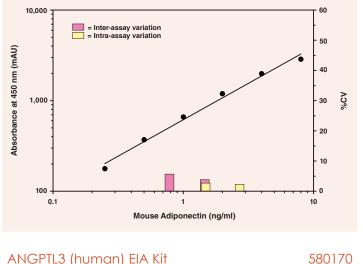
96 wells

† SPI-BIO Assays are available through Cayman Chemical only within North & South America and Asia; elsewhere contact Bertin Pharma.

Adiponectin (mouse) EIA Kit[†]

10007620

Acpr30, AdipoQ, GBP-28

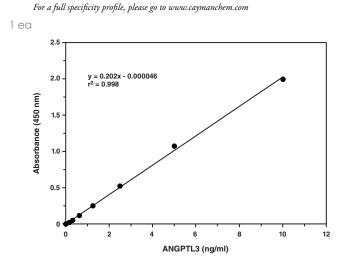

Stability: ≥6 months at 4°C Limit of Detection: 0.1 ng/ml

Summary: This EIA is based on a double-antibody sandwich technique which utilizes a mouse adiponectin-specific monoclonal capture antibody and a HRP-conjugated polyclonal antibody for detection.

Specificity:

For a full specificity profile, please go to www.caymanchem.com

96 wells

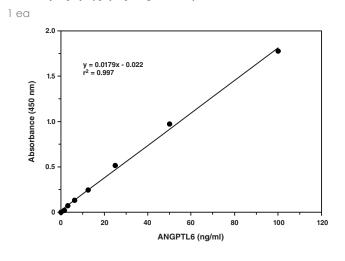


ANGPTL3 (human) EIA Kit

Angiopoietin-like protein 3

Stability: ≥6 months at 4°C Limit of detection: 150 pg/ml

Summary: ANGPTL3 demonstrates pro-angiogenic effects by binding integrin $\alpha \nu \beta 3$, which induces endothelial cell migration and adhesion. It also dually inhibits the catalytic activities of lipoprotein lipase, which catalyzes the hydrolysis of triglycerides, and endothelial lipase, which hydrolyzes HDL phospholipids. In hypolipidemic, yet obese, KK/Snk mice, a reduction in ANGPTL3 expression promotes the clearance of triglycerides, while human ANGPTL3 plasma concentrations positively correlate with plasma HDL cholesterol and HDL phospholipid levels. Cayman's Human ANGPTL3 EIA Kit is an immunometric (i.e., sandwich) assay which can be used to measure ANGPTL3 in human serum, plasma, or cell culture supernatants. Specificity:

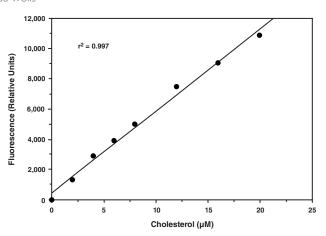

ANGPTL6 (human) EIA Kit

Angiopoietin-like protein 6

Stability: ≥6 months at 4°C Limit of detection: 1.2 ng/ml

Summary: ANGPTL6 induces angiogenensis and arteriogenesis through activation of the ERK1/2-eNOS pathway. Transgenic mice that persistently overexpress ANGPTL6 have increased systemic energy expenditure counteracting high-fat dietinduced obesity and related insulin resistance, while onset of obesity in ANGPTL6 null mice is attributed to decreased energy expenditure and insulin resistance. Circulating levels of human ANGPTL6 are elevated in obese or diabetic conditions and positively correlate with fasting serum glucose levels. Cayman's Human ANGPTL6 EIA Kit is an immunometric (i.e., sandwich) assay which can be used to measure ANGPTL6 in human serum, plasma, or cell culture supernatants. Specificity:

For a full specificity profile, please go to www.caymanchem.com



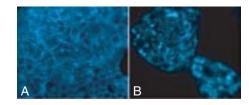
Cholesterol Assav Kit

Stability: ≥1 year at -20°C

Summary: Cholesterol, particularly in the form of LDLs, is well understood to be associated with increased risk of coronary heart disease. The measurement of cholesterol is one of the most common tests performed in the clinical laboratory setting. Cayman's Cholesterol Assay provides research labs with a simple fluorometric method for the sensitive quantitation of total cholesterol in plasma or serum.

Cholesterol Cell-Based Detection Assav Kit

10009779

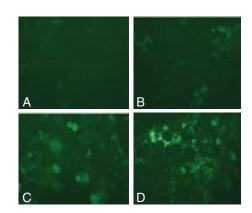

Stability: ≥6 months at -20°C

Summary: The mechanism for the movement of cholesterol from intracellular sites to their ultimate cellular destination is an unresolved question of fundamental importance to cell biology and medicine. Cayman's Cholesterol Cell-Based Detection Assay provides a simple fluorometric method to study mechanisms and biological factors that regulate cholesterol metabolism or movement within cells.

192 wells

580190

10007640


Accumulation of cholesterol in HepG2 cells. Panel A: Cells treated with DMSO (vehicle) demonstrate that the majority of cholesterol is localized on the plasma membrane. Panel B: U-18666A (1.25 µM) treatment for 48 hours induces intracellular accumulation of cholesterol droplets.

Cholesterol Uptake Cell-Based Assav Kit 600440

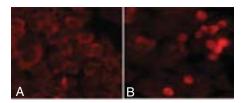
Stability: ≥6 months at -20°C

Summary: Maintaining body cholesterol homeostasis is critical for normal physiological functions and is achieved by a highly regulated balance of *de novo* synthesis, dietary cholesterol absorption, biliary clearance, and excretion. A better understanding of the relationship between cholesterol absorption and synthesis may allow for the development of powerful novel strategies for the prevention and treatment of hypercholesterolemia. Cayman's Cholesterol Uptake Cell-Based Assay Kit provides a convenient tool for studying cholesterol absorption modulators by employing NBD Cholesterol, a fluorescently-tagged cholesterol, as a probe for the detection of cholesterol taken up by cultured cells.

1 ea

U-18666A increases NBD Cholesterol uptake in Caco-2 cells as measured by fluorescent microscopy. Panel A: Cells grown in culture medium containing 10% FBS and treated with vehicle. There is minimal NBD Cholesterol uptake in these cells. *Panel B:* Cells grown in culture medium containing 10% FBS and treated with 2.5 µM U-18666A. There is increasing NBD Cholesterol uptake in these cells, compared to those cells grown in culture medium containing 10% FBS. Panel C: Cells grown in culture medium containing no FBS and treated with vehicle. Note that there is an increase in fluorescence intensity in most of cells. Panel D: Cells grown in culture medium containing no FBS and treated with 2.5 µM U-18666A, show that when intracellular transportation of cholesterol was blocked. there was a dramatic increase in the uptake of NBD Cholesterol.

† SPI-BIO Assays are available through Cayman Chemical only within North & South America and Asia; elsewhere contact Bertin Pharma

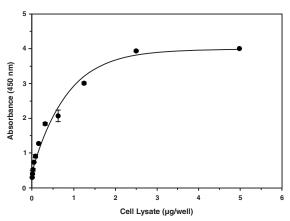

ChREBP Cell-Based Translocation Assav Kit

10010060

Stability: ≥1 year at -20°C

Summary: The identification of ChREBP activators is of great interest for drug discovery. The distinct translocation of the protein from the cytoplasm to the nucleus during activation makes it possible to study modulators of ChREBP through subcellular localization of the protein using conventional immunocytochemical staining with a specific antibody. Cayman's ChREBP Cell-Based Translocation Assay provides a highly specific ChREBP primary antibody together with a Dylight[™] (product of Thermo Scientific, Inc.) conjugated secondary antibody in a ready to use format.

96 wells


Translocation of ChREBP into nuclei induced by sucrose. Panel A: HepG2 cells treated with PBS (vehicle) demonstrate cytoplasmic localization of ChREBP. Panel B: Sucrose treatment for 24 hours induces ChREBP translocation into the nuclei.

ChREBP Transcription Factor Assay Kit 10006909

Stability: ≥6 months at -80°C

Summary: ChREBP is a transcription factor playing a critical role in the nutrient and hormonal regulation of genes encoding enzymes of glucose metabolism and lipogenesis pathways. Cayman's ChREBP Transcription Factor Assay Kit is a nonradioactive, sensitive method for detecting specific transcription factor DNA binding activity in nuclear extracts and whole cell lysates in a 96-well plate format.

Olivia L. May, Ph.D. Sirtuins, to your health

Me

Metabolic control is a delicate balance between energy intake, utilization, and storage. As researchers are discovering, sirtuins, a family of nicotinamide adenine dinucleotide (NAD⁺)-dependent deacetylases, may be crucial sensors of the metabolic network that controls energy homeostasis, regulating fat and glucose metabolism in response to physiological changes in energy levels. Sirtuins not only deacetylate histones and several transcriptional regulators in the nucleus, but also modulate specific proteins in the cytoplasm and in mitochondria. Not too long ago, sirtuins gained major nutriceutical interest as the Holy Grail for extending longevity. The search was on to identify activators of this youth fountain, and the most notable sirtuin activator, resveratrol, a polyphenol found in red wine, berries, and peanuts became a household name. This was one more good reason to drink red wine, as you toasted to long life. Though not yet fully translatable to humans, in yeast, worms, flies, and mice, a further connection of sirtuins to longevity has been made related to caloric restriction.^{1,2} Sirtuins can stimulate the activity of mitochondria, the powerhouses of cells, and of mitochondrial proteins, which have a key role in diseases relating to metabolism, such as type 2 diabetes and obesity, but also for neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease.³ Thus, sirtuins may have a protective role in metabolic dysfunction. Much is still left to be understood before a modern Ponce de Leon can lay claim to this exact function of sirtuin activation. Meanwhile, you can still toast to good health as sirtuins are proving to play a key part in healthy metabolic maintenance.

Meet the Family

In mammals the sirtuin family includes seven proteins (SIRT1–SIRT7), which vary in tissue specificity, subcellular localization, enzymatic activity, and target (Table 1). They are divided into four classes: class I (SIRT1–SIRT3), class II (SIRT4), class III (SIRT5), and class IV (SIRT6 and SIRT7). In addition to their original role as histone deacetylases, they have recently been described as ADP-ribosyl transferases and also possess demalonylation and desuccinylation activity with a wide variety of target proteins.¹

Sirtuin localization and function

Sirtuin	Class	Localization	Activity	Targets	
SIRT1	I	Nucleus, cytosol	Deacetylation	PGC1 , FOXO, p53, HIF1 , LXR, SREBP1c and more	
SIRT2	I	Cytosol	Deacetylation	PEPCK, FOXO1, PAR3	
SIRT3	I	Mitochondria	Deacetylation	LCAD, HMGCS2, GDH, components of mitochondrial respiration, IDH2 and more	
SIRT4	SIRT4 II Mitochond		ADP-ribosylation	GDH	
SIRT5	ш	Mitochondria	Deacetylation, demalonylation, desuccinylation	CPS1	
SIRT6	IV	Nucleus	Deacetylation, ADP-ribosylation	IGF1 <i>via</i> Histones H3K9 and H3K56	
SIRT7	IV	Nucleolus	Not known	Not known	

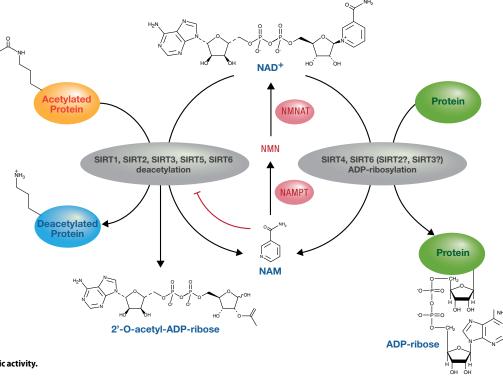
Table 1. Sirtuin localization and function

SIRT1, the best-described sirtuin, has been studied for its role in caloric restriction, the prevention of aging-related diseases, and the maintenance of metabolic homeostasis. SIRT1 expression is upregulated during low energy states such as starvation and repressed with excess energy as with a high fat diet. In differentiated adipocyte cell lines, SIRT1 inhibits adipogenesis and enhances fat mobilization through lipolysis by suppressing the activity of PPARy. SIRT1 promotes the assembly of a co-repressor complex, involving NCoR1 and SMRT, on the promoters of PPARy target genes to repress their transcription and thus limit fat storage in situations of caloric restriction and fasting. SIRT1 deacetylation of PPARy co-activator 1α (PGC1 α), a transcriptional co-regulator that controls mitochondrial biogenesis and activity, leads to PGC1 activation and to the induction of downstream pathways that control mitochondrial gene expression.⁴ Also, SIRT1 controls the acetylation of forkhead box O (FOXO) transcription factors, which are important regulators of lipid and glucose metabolism as well as of stress responses. SIRT1-mediated deacetylation of FOXO has been suggested to direct FOXO to its selective targets.

SIRT2 may play a role in metabolic homeostasis by deacetylating phosphoenolpyruvate carboxykinase, a kinase involved in gluconeogenesis, preventing its degradation through ubiquitylation. SIRT2 also deacetylates and activates FOXO1, which is involved in adipogenesis.⁵

Localized primarily to mitochondria, **SIRT3** is the major mitochondrial deacetylase. Several of its targets have important roles in metabolic homeostasis. Long-chain acyl CoA dehydrogenase (LCAD), a protein involved in fatty acid oxidation, is targeted by SIRT3 during prolonged fasting, preventing LCAD hyperacetylation and enabling fatty acid breakdown.⁶ Deletion of SIRT3 in mice impairs fat breakdown, enhancing diet-induced obesity and impairing tolerance to cold exposure upon fasting. SIRT3 deacetylation sites have also been identified in 3-hydroxy-3-methylglutaryl CoA synthase 2, which regulates the production of ketone bodies, an important energy source for the brain when blood glucose levels are low. In response to caloric restriction, SIRT3 deacetylates/activates isocitrate dehydrogenase 2, which is involved in the Krebs cycle, and the Krebs cycle enzyme glutamate dehydrogenase (GDH).⁷ SIRT3 also deacetylates components of the pathway involved in mitochondrial aerobic respiration.

SIRT4 functions in metabolism by ADP-ribosylating GDH, inhibiting its activity and blocking amino acid-induced insulin secretion. SIRT4 also regulates fatty acid oxidation in hepatocytes and myocytes. Short hairpin RNA-mediated knockdown of SIRT4 in the liver increases fatty acid oxidation.⁸ It seems that SIRT3 and SIRT4 have opposing roles in the regulation of GDH, and fatty acid oxidation.


SIRT5 targets carbamoyl phosphate synthetase 1, whose deacetylation during fasting activates ammonia detoxification through the urea cycle.⁹

As well as being involved in DNA stability and repair, **SIRT6** has a role in metabolism and aging. SIRT6^{-/-} mice die early in life, have reduced insulin growth factor (IGF) 1 levels and are severely hypoglycemic, with detrimental levels of glucose uptake in muscle and brown adipose tissue. Specifically ablating SIRT6 in mice at birth results in reduced body weight (due to reduced IGF1 levels) that normalizes at 1 year of age but then develops into obesity later in life.¹⁰

While **SIRT7** is known to activate RNA polymerase I transcription, its protein substrate is still not known.

Sirtuins as NAD⁺ sensors and role for resveratrol

Sirtuins are thought to act as metabolic sensors by translating changes in NAD⁺ levels into adaptive responses. The enzymatic reaction catalyzed by

Figure 1. Sirtuin enzymatic activity.

sirtuins requires NAD⁺ as a substrate.¹¹ NAD⁺ synthesis and bioavailability NAD⁺ levels, accompanied by sirtuin activation, rise in muscle, liver, and is determined by the nutritional state of the cell. Therefore, NAD⁺ availability white adipose tissue during fasting, caloric restriction, and exercise, whereas a controls adaptive responses to energy stress by moderating the activity of high-fat diet stimulates its conversion to a reduced form, NADH, decreasing sirtuins and their downstream effectors.¹² Sirtuins consume NAD⁺, releasing relative NAD+ levels. The sirtuin activator, resveratrol has been reported to nicotinamide (NAM), O-acetyl ADP ribose, and the deacetylated target protein mimic the effects of calorie restriction, to increase NAD⁺ concentration, (Figure 1). The K_m values of sirtuins for NAD⁺ have been reported in the and to protect against obesity and insulin resistance in high-fat fed mice. range of 100-300 µM.¹³ At high concentrations, NAM will non-competitively Resveratrol also activates AMPK (AMP-activated protein kinase), a protein bind and feedback-inhibit sirtuin activity.¹⁴ Interestingly, as NAD⁺ is salvaged that senses nutrient deprivation by montinoring AMP/ATP and ADP/ATP and resynthesized, the expression of the NAM phosphoribosyltransferase ratios and increasing NAD⁺ and SIRT1 as needed.¹⁵ Elegant work by Park et (NAMPT) enzyme that converts NAM to NAD+ is regulated in a circadian al. has recently indentified the cAMP effector protein Epac1 as an upstream mediator of an AMPK→NAD⁺→SIRT activation pathway.¹⁶ They report that fashion by a sirtuin. SIRT1 is recruited to the NAMPT promoter to increase NAMPT expression and thus, NAD⁺ biosynthesis. resveratrol increases cAMP levels by competitively inhibiting cAMP-specific phospodiesterases PDE1, PDE3, and PDE4 (IC508 ~6-14 µM) which leads to an increase in AMPK activity (Figure 2).¹⁶

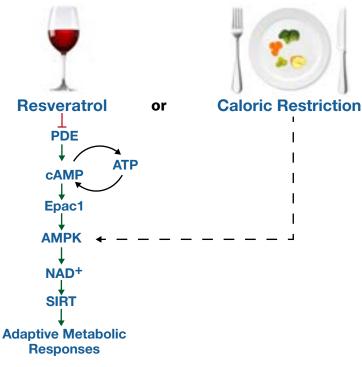


Figure 2. Proposed pathway of sirtuin activation.

Conclusion

In general, sirtuins become active in nutritional or energetic deficit, promoting metabolic adjustments aimed at improving metabolic efficiency by utilizing all available energy sources. Working towards understanding the unique activities of each sirtuin member and their upstream activation should prove useful in managing metabolic and aging-related diseases. Cayman offers a complete set of highly pure, human recombinant sirtuin proteins and several convenient fluorescence-based assay kits for screening inhibitors or activators of SIRT1, SIRT2, SIRT3, or SIRT6 (see pages 50-51 and 47, respectively). We also offer a cell-based colorimetric assay for measuring intracellular NAD⁺/NADH in culture cells (Item No. 600480). Finally, sirtuin activators such as resveratrol (Item No. 10004235) and sirtinol (Item No. 10523) are also available.

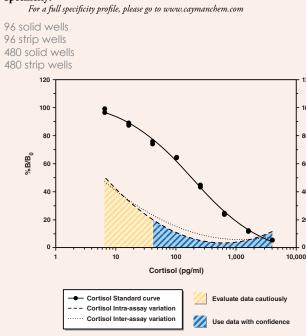
References

- 1. Houtkooper, R.H., Pirinen, E., and Aurwerx, J. Nature Reviews Mol. Cell Biol. 13, 225-238 (2012).
- 2. Demetrius, L. EMBO Reports 6, S39-S44 (2005).
- 3. Houtkooper, R.H., Williams, R.W, and Aurwerx, J. Cell 142, 9-14 (2010).
- 4. Rodgers, J.T., Lerin, C., Haas, W., et al. Nature 434, 113–118 (2005).
- 5. Jing, E., Gesta, S., and Kahn, C.R. *Cell Metab.* **6**, 105–114 (2007).
- 6. Hirschey, M.D., Shimazu, T., Goetzman, E., et al. Nature 464, 121-125 (2010).
- 7. Someya, S., Yu, W., Hallows, W. C., et al. Cell **143**, 802–812 (2010).
- 8. Nasrin, N., Wu, X., Fortier, E., et al. J. of Biol. Chem. 285(42), 31995-32002 (2010).
- 9. Nakagawa, T., Lomb, D.J., Haigis, M.C., et al. Cell 137(3), 560-570 (2009).
- 10. Schwer, B., Schumacher, B., Lombard, D.B., et al. Proc. Natl Acad. Sci. USA **107**, 21790–21794 (2010).
- 11. Denu, J.M. *TIBS* **28(1),** 41-48 (2003).
- 12. Cantó, C. and Auwerx, J. Cold Spring Harb. Symp. Quant. Biol. LXXVI, a010439 published in advance (2012).
- Houtkooper, R.H., Cantó, C., Wanders, R.J., et al. Endocr. Rev. 31(2), 194-223 (2010)
 Rasler, M., Michel, S., and Breitenbach, M. Front. Pharmacol. 3, article 32 (2012).
- Price, N.L., Gomes, A.P., Ling, A.J.Y., et al Cell Metab. 15, 675-690 (2012).
- 16. Park, S-J., Ahmad, F., Philip, A., et al. Cell 148, 421-433 (2012).

32 **Cayman Chemical** caymanchem.com

Cortisol

Kits

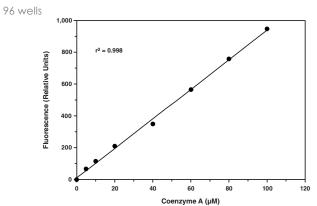

Cortisol is a glucocorticoid produced by the adrenal cortex in response to adrenocorticotropic hormone (ACTH). It is secreted with a circadian periodicity, and peaks just prior to waking in the morning. Cortisol is often elevated in major depressive disorder, certain forms of hypertension, stress, AIDS, and in the visceral fat of obese individuals. Cortisol can be measured in many matrices including blood, urine, and saliva. In serum, approximately 90-95% of cortisol is bound to proteins. Urinary cortisol is not bound to proteins, but its levels are dependent on glomerular and tubular function. In saliva, approximately 67% of cortisol is unbound. There is generally good correlation between cortisol measurements in saliva and serum.

Cortisol EIA Kit

Stability: ≥1 year at -20°C

Sensitivity: 50% B/B₀: 180 pg/ml • 80% B/B₀: 35 pg/ml

Summary: Cayman's Cortisol EIA Kit is a competitive assay that can be used for quantification of cortisol in urine, plasma, and other sample matrices. Specificity:



Coenzyme A Assay Kit

CoA

Stability: ≥6 months at -20°C

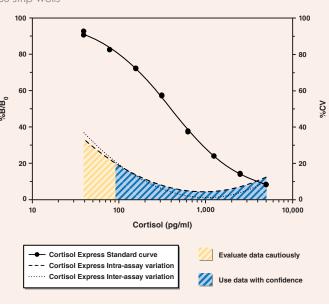
Summary: Coenzyme A (CoA) is an indispensible cofactor in all living organisms, functioning as an acyl group carrier and carbonyl-activating group in a number of key biochemical reactions, including the TCA cycle and fatty acid metabolism. CoA is involved in over 100 different reactions in intermediary metabolism with approximately 4% of known enzymes utilizing CoA as a cofactor. Cayman's Coenzyme A Assay Kit can be used for assaying coenzyme A from plasma, serum, urine, cell lysates, and tissue homogenates. In this assay, CoA forms a fluorescent complex with europium chloride and tetracycline in the presence of periodic acid.

Cortisol Express EIA Kit

Stability: ≥1 year at -20°C

Sensitivity: 50% B/B₀: 400 pg/ml • 80% B/B₀: 110 pg/ml Summary: Cayman's Cortisol Express EIA is a competitive assay that permits the

rapid measurement of cortisol from biological samples, requiring only a two hour


incubation and one hour development times. This EIA offers the convenience of a fast assay while maintaining sensitivity.

Specificity: Refer to Cortisol EIA Kit (Item No. 500360)

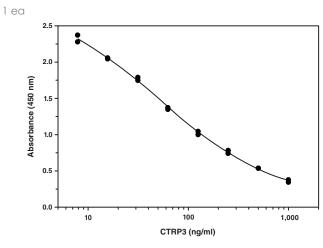
96 solid wells 96 strip wells 480 solid wells

480 strip wells

500360

CTRP3 (human) EIA Kit

Complement C1q TNF-related Protein 3


Stability: ≥6 months at 4°C Limit of detection: 10 ng/ml

Summary: CTRP3 is a glycoprotein secreted by adipocytes and leukocytes that has important roles in morphogenesis, metabolism, and cell function. It is induced during chondrogenic differentiation, contributing to bone and cartilage differentiation and angiogenesis via ERK1/2 signaling and has been shown to suppress hepatic glucose output via inhibition of gluconeogenesis and to lower blood glucose levels in both normal and *ob/ob* mice. Cayman's CTRP3 (Human) EIA Kit is a competitive assay which can be used to measure CTRP3 in human serum, plasma, or cell culture supernatants.

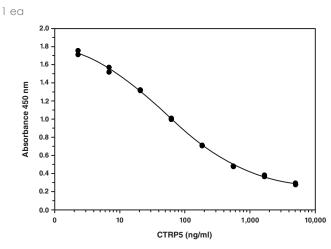
Specificity:

700440

For a full specificity profile, please go to www.caymanchem.com

CTRP5 (human) EIA Kit

C1QTNF, C1q tumor necrosis factor- α -related protein 5 Stability: ≥6 months at 4°C Limit of detection: 2.3 ng/ml


Summary: CTRP5 is a member of the C1g/tumor necrosis factor superfamily. Mutations in this gene are associated with late-onset retinal degeneration. CTRP5 is also abundantly expressed in adipose tissue and circulates in the blood. It is secreted as a glycoprotein, initially forming trimers then higher order oligomeric complexes. Extracellular, recombinant CTRP5 is a potent activator of AMPK, leading to increased cell surface recruitment of GLUT4 and increased glucose uptake. Serum CTRP5 levels are significantly elevated in obese or diabetic mice. Cayman's CTRP5 (Human) EIA Kit is a competitive assay which can be used to measure CTRP5 in human serum or plasma.

Specificity:

500370

580200

For a full specificity profile, please go to www.caymanchem.com



DPP (IV) Inhibitor Screening Assay Kit

Stability: ≥1 year at -80°C

Summary: DPP (IV) inhibitors have emerged as a new class of oral antidiabetic agents. These inhibitors promote glucose homeostasis by inhibiting degradation of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP-1) by DPP (IV). GLP-1 extends the action of insulin while suppressing the release of glucagon. Cayman's DPP (IV) Inhibitor Screening Assay provides a convenient fluorescence-based method for screening DPP (IV) inhibitors in a 96-well format.

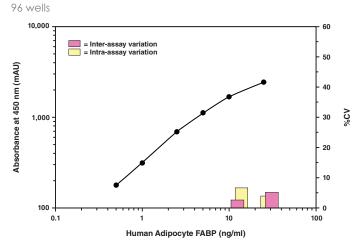
96 wells

FABP4 (human) EIA Kit[†]

10007614

Adipocyte FABP, A-FABP, aP2

Stability: ≥6 months at 4°C Limit of Detection: 0.1 ng/ml

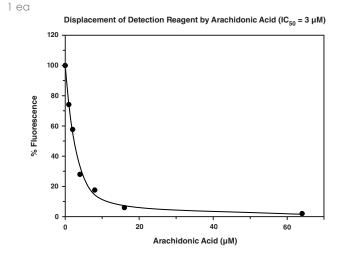

Summary: FAPB4 is a 15 kDa member of the intracellular FABP family, which is known for the ability to bind fatty acids and related compounds (bile acids or retinoids). FABP4 is expressed in a differentiation-dependent fashion in adipocytes and is a critical gene in the regulation of the biological function of these cells. This EIA uses a plate coated with a goat polyclonal antibody against human FABP4. Detection of bound FABP4 is achieved with biotin-labeled anti-human FABP4 polyclonal and streptavidin-HRP.

Specificity:

580120

700210

For a full specificity profile, please go to www.caymanchem.com


FABP4 Inhibitor/Ligand Screening Assay Kit

10010231

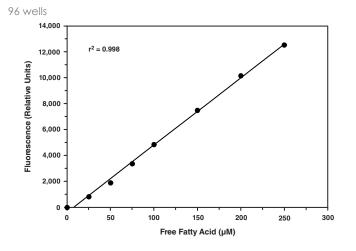
Adipocyte FABP, A-FABP, aP2

Stability: ≥1 year at -80°C

Summary: Cayman's FABP4 Ligand Binding Assay provides a sensitive method for the identification of FABP4 ligands. The assay makes use of a detection reagent that exhibits increased fluorescence when bound to FABP4. Any strong ligand and/or inhibitor of FABP4 will displace the detection reagent thereby reducing the fluorescence.

† SPI-BIO Assays are available through Cayman Chemical only within North & South America and Asia; elsewhere contact Bertin Pharma

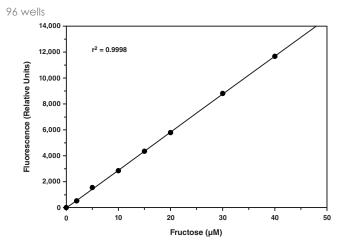
Free Fatty Acid Assay Kit


700310

700690

Stability: ≥6 months at -20°C

FFA


Summary: The measurement of FFA can be useful in determining metabolic status. Cayman's FFA Assay can be used for measuring free fatty acids in plasma, serum, and urine. The FFA Assay utilizes a coupled enzymatic reaction that results in generation of the highly fluorescent product resorufin.

Fructose Fluorometric Assay Kit

Stability: ≥6 months at -20°C

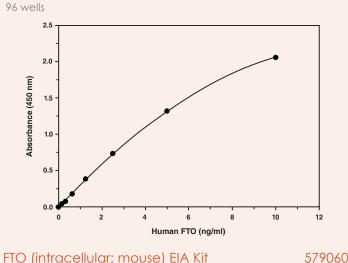
Summary: Fructose is a dietary monosaccharide directly absorbed into the bloodstream during digestion. Excess fructose consumption leads to various complications related to metabolic syndrome as well as contributes to the development of non-alcoholic fatty liver disease. Cayman's Fructose Fluorometric Assay provides a fluorescencebased method for detecting fructose in plasma, serum, urine, tissue homogenates, and cell lysates.

FTO

Fat Mass and Obesity-Associated Gene (FTO) is abundantly expressed in most organs. The gene product is an AlkB-like DNA/RNA demethylase with a strong preference for single stranded DNA and RNA. Single nucleotide polymorphisms in the first intron of the FTO gene contribute to childhood obesity and severe adult obesity. Knockout or loss-of-function of FTO produces an autosomal-recessive lethal syndrome with multiple malformations and severe growth retardation. FTO is the first locus unequivocally associated with adiposity, with activity within the central nervous system apparently regulating feeding behavior and energy expenditure.

FTO (intracellular; human) EIA Kit 579010

Fat Mass and Obesity-Associated Gene

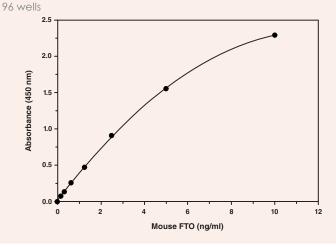

Stability: ≥6 months at 4°C Limit of detection: 50 pg/ml

Summary: Cayman's FTO (intracellular; human) EIA Kit is an immunometric (*i.e.*, sandwich) assay which can be used to measure FTO in human cell lysates. Specificity:

100%

100%

FTO (human)


FTO (intracellular; mouse) EIA Kit

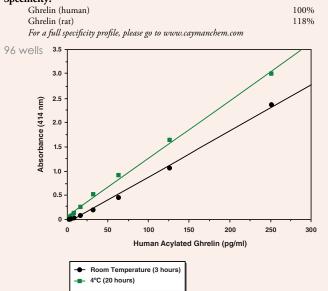
Fat Mass and Obesity-Associated Gene

Stability: ≥6 months at 4°C Limit of detection: 20 pg/ml

Summary: Cayman's FTO (intracellular; mouse) EIA Kit is an immunometric (i.e., sandwich) assay which can be used to measure FTO in mouse cell lysates. Specificity:

FTO (mouse)

Ghrelin

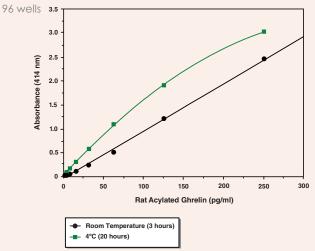

Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is synthesized principally in the stomach. It stimulates food intake and transduces signals to the hypothalamic regulatory nuclei that control energy homeostasis. The peptide consists of 28 amino acids with an octanoylation site at the serine-3 residue. Ghrelin is present in the peripheral circulation in acylated (octanoylated) and nonacylated forms in which the acylated form is biologically active. All of the kits below are based on a double-antibody sandwich technique designed to measure either the acylated or non-acylated forms of the peptide.

Ghrelin (human acylated) EIA Kit[†] 10006306

Stability: ≥6 months at -20°C

Limit of Detection: 1.5 pg/ml after 20 hour immunological incubation 4 pg/ml after 3 hour immunological incubation

Summary: This EIA kit specifically measures the acylated form of ghrelin. Specificity:


•Also Available: Ghrelin (human unacylated) EIA Kit[†] (10008952)

Ghrelin (rat acylated) EIA Kit[†] 10006307

Stability: ≥6 months at -20°C Limit of Detection: 1 pg/ml after 20 hour immunological incubation 3.5 pg/ml after 3 hour immunological incubation Summary: This EIA kit specifically measures the acylated form of ghrelin. Specificity:

Ghrelin (human)	82%
Ghrelin (rat)	100%

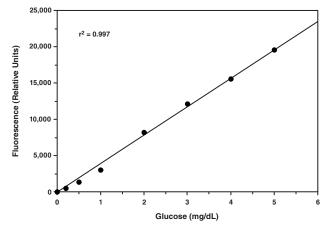
For a full specificity profile, please go to www.caymanchem.com

•Also Available: Ghrelin (rat unacylated) EIA Kit (10008953)

For Laboratory Use Only. Not for human or veterinary diagnostic or therapeutic use. For current US pricing see caymanchem.com.

For current European or other overseas pricing, see caymaneurope.com or contact your local distributor.

Glucose Fluorometric Assav Kit

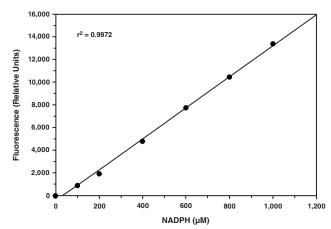

700710

700300

Stability: ≥1 year at -20°C

Summary: Glucose is the primary source of energy for the body's cells. Failure to maintain blood glucose in the normal range leads to conditions of hypoglycemia or hyperglycemia, such as diabetes mellitus. Cayman's Glucose Fluorometric Assay can be used to accurately quantify glucose in plasma, serum, and urine. This assay uses a glucose oxidase - peroxide reaction system to produce the highly fluorescent compound resorufin.

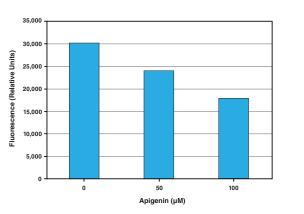
• Also Available: Glucose Colorimetric Assay Kit (10009582)


Glucose-6-Phosphate Dehydrogenase Activity Assay Kit

G6PDH

Stability: ≥6 months at -20°C

Summary: G6PDH is a cytosolic enzyme that catalyzes the first step in the pentose phosphate pathway. G6PDH deficiency, the most common enzyme deficiency worldwide, causes a spectrum of diseases including neonatal hyperbilirubinemia, acute hemolysis, and chronic hemolysis. G6PDH activity has been shown to be upregulated in rat and mouse models of obesity, hyperglycemia, and hyperinsulinemia. Cayman's G6PDH Assay provides a fluorescence-based method for detecting G6PDH activity in a variety of samples including erythrocyte lysates, tissue homogenates, and cell culture samples.

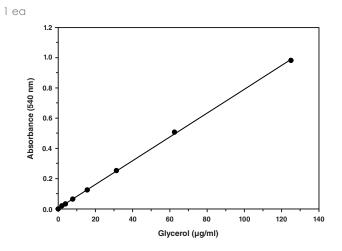


† SPI-BIO Assays are available through Cayman Chemical only within North & South America and Asia; elsewhere contact Bertin Pharma

Glucose Uptake Cell-Based Assay Kit

Stability: ≥6 months at -20°C

Summary: Glucose metabolism is a primary source of energy and biomaterials for the maintenance of cell homeostasis. The rate of glucose uptake in cells is dynamic and tightly regulated by hormones and/or growth factors including insulin. Cancer cells exhibit increased glucose uptake and metabolism by aerobic glycolysis in order to support a high rate of proliferation. Chemicals that block glucose uptake by cancer cells have been shown to have anti-cancer effects. Cayman's Glucose Uptake Cell-based Assay Kit provides a convenient tool for studying modulators of cellular glucose uptake. The kit employs 2-NBDG, a fluorescently-labeled deoxyglucose analog, as a probe for the detection of glucose taken up by cultured cells.



Measurement of 2-NBDG uptake in LS-180 cells grown in glucose- and serum-free medium and treated with various doses of Apigenin.

Glycerol Cell-Based Assay Kit

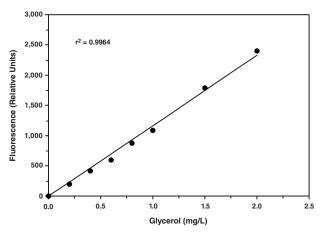
Stability: ≥1 year at -20°C

Summary: Cayman's Glycerol Cell-Based Assay provides a convenient tool for studying triglycerides/fatty acid cycling and its regulation in adipocytes or hepatocytes. This kit will allow investigators to screen compounds involved in lipid storage and metabolism. Chloroquine is included in the kit as a positive control for screening pharmaceuticals that induce lipid droplet accumulation and free glycerol release from hepatocytes.

Glycerol Fluorometric Assay Kit

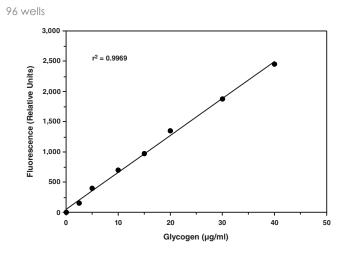
Kit

700720


700480

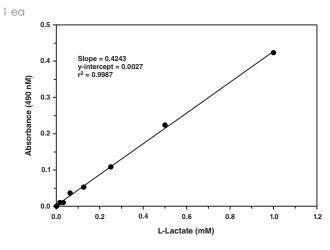
Stability: ≥ 1 year at -20°C Limit of Detection: 0.2 mg/L (±0.05 mg/L) Summary: Glycerol, the backbone of triglycerides, is an important metabolite in energy metabolism involved in both oxidation and synthetic processes. The measurement of circulating levels of glycerol and free fatty acids are considered to reflect lipolysis, and may be useful to evaluate lipolysis under various conditions in clinical studies. Cayman's Fluorometric Glycerol Assay Kit provides a fluorescencebased method for detecting glycerol in plasma and serum. The Fluorometric Glycerol Assay measures glycerol by a coupled enzymatic reaction system resulting in production of the fluorescent product of resorufin.

600470


10011725

•Also Available: Glycerol Colorimetric Assay Kit (10010755)

Glycogen Assay Kit


Stability: ≥6 months at -20°C **Summary:** Glycogen is a polysaccharide that is the principal storage form of glucose in animal and human cells. Glycogen is made primarily by the liver and muscles, but it can also be made by glycogenesis within the brain and stomach. Cayman's Glycogen Assay provides a fluorescence-based method to quantify glycogen from tissue.

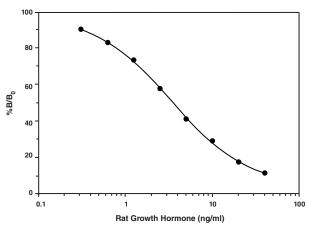
Glycolysis Cell-Based Assay Kit

Stability: ≥6 months at -20°C

Summary: Cayman's Glycolysis Cell-Based Assay Kit provides a colorimetric method for detecting extracellular L-lactate, the end product of glycolysis, in cultured cells. In the assay, lactate dehydrogenase catalyzes the oxidation of lactate to pyruvate, in which the formed NADH reduces a tetrazolium substrate to a highly-colored formazan which absorbs strongly at 490-520 nm. The amount of formazan produced is proportional to the amount of lactate released into the culture medium and can be used as an indicator of the cellular glycolytic rate.

Growth Hormone (rat) EIA Kit[†] 589601

GH **Stability:** ≥6 months at -20°C


Sensitivity: 50% B/B₀: 3.6 ng/ml • 80% B/B₀: 1 ng/ml

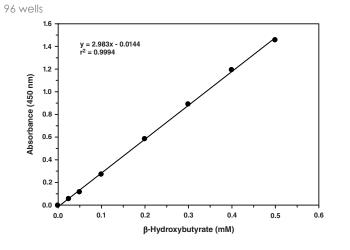
Summary: GH is a polypeptide hormone with a molecular weight of 23 kDa released from somatotropes of the anterior pituitary. It is regulated by several neurotransmitters and neuropeptides. Among other functions it plays an essential role in regulating body growth.

0		
Nn/	ecificity:	

Rat Growth Hormone	100%
Mouse Growth Hormone	91%
Rat Prolactin	<1.0%
For a full specificity profile, please go to www.caymanchem.com	

96 wells

700190


β-Hydroxybutyrate (Ketone Body) Assay Kit

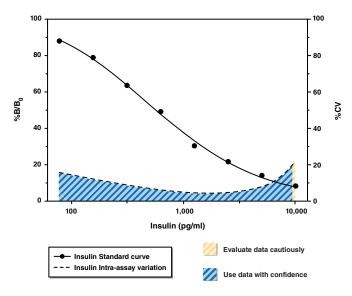
β-HB, 3-Hydroxybutric Acid

600450

Stability: ≥1 year at -20°C

Summary: β -HB is a "ketone body" which is produced in the liver, mainly from the oxidation of fatty acids, and is exported to peripheral tissues for use as an energy source. Normally ketosis can indicate that lipid metabolism has been activated and the pathway of lipid degradation is intact. Cayman's β -HB (Ketone Body) Assay provides an accurate method for measuring β -HB levels in plasma, serum, or urine in a 96-well plate format with a colorimetric readout at 445-455 nm.

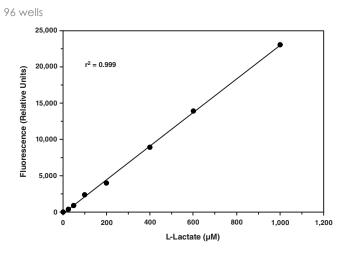
Insulin (rat) EIA Kit[†]


589501

Stability: ≥6 months at -20°C **Sensitivity:** 50% B/B₀: 0.63 ng/ml

Summary: Insulin is a polypeptide hormone synthesized by the β cells of the islets of Langherans of the pancreas. Insulin's best known action is to lower the blood glucose concentration by increasing the rate at which glucose is converted to glycogen in the liver and muscle, and to fat in adipose tissue, by stimulating the rate of glucose metabolism, and by depressing gluconeogenesis. Specificity:

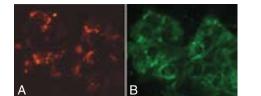
For a full specificity profile, please go to www.caymanchem.com


96 wells

L-Lactate Assay Kit

Stability: ≥6 months at -20°C

Summary: L(+)-Lactate is the major stereoisomer of lactate formed in human intermediary metabolism. The lactate to pyruvate ratio reflects the redox state of the cell and describes the balance between NAD⁺ and NADH, which is dependent on the interconversion of lactate and pyruvate via LDH. Monitoring lactate levels is, therefore, a good way to evaluate the balance between tissue oxygen demand and utilization and is useful when studying cellular and animal physiology. Cayman's L-Lactate Assay provides a fluorescence-based method for detecting L-lactate in biological samples such as serum, plasma, blood, urine, and saliva. It can also be utilized to determine intracellular and extracellular lactate concentrations in cell culture samples.


•Also Available: D-Lactate Assay Kit (700520)

LDL Uptake Cell-Based Assay Kit 10011125

Stability: ≥6 months at 4°C

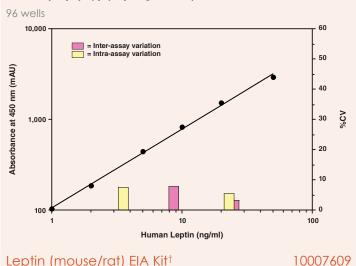
Summary: LDL uptake and its regulation are important therapeutic targets for atherosclerosis and related diseases. Cayman Chemical's LDL Uptake Cell-Based Assay employs a preparation of human LDL conjugated to DylightTM 549 as a fluorescent probe for detection of LDL uptake into cultured cells. A LDL receptorspecific antibody and a DylightTM 488-conjugated secondary antibody are included in the kit for identifying the distribution of LDL receptors.

1 ea

LDL Uptake in HepG2 cells. HepG2 cells were treated with 32 µM EGCG overnight followed by addition of LDL-DyLight[™] 549 for four hours. Panel A: DyLight[™] 549 taken into cells appear in red. Panel B: LDL receptors in green

Leptin

700510


Leptin is a 16 kDa protein hormone encoded by the obese (*ob*) gene with important effects in metabolism and regulation of body weight. Leptin has dual actions, decreasing appetite and increasing energy consumption. The primary effect of leptin appears to be mediated by leptin receptors expressed mainly in the hypothalamus. Mutations in the *ob* gene or leptin receptor gene causes hyperphagia, reduced energy expenditure, and severe obesity. The assays listed below are based on a doubleantibody sandwich technique for sensitive measurement of leptin or leptin receptor.

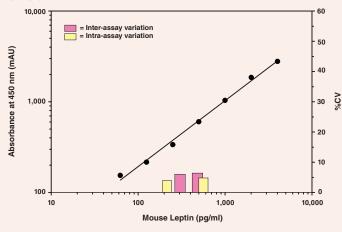
Stability: ≥6 months at 4°C Limit of Detection: 0.5 ng/ml

Summary: This EIA is based on a double-antibody sandwich technique. The wells of the plate supplied with the kit are coated with a polyclonal antibody specific of human leptin. This antibody will bind any leptin introduced in the wells (sample or standard).

Specificity:

For a full specificity profile, please go to www.caymanchem.com

Leptin (mouse/rat) EIA Kit[†]


Stability: ≥6 months at 4°C Limit of Detection: 50 pg/ml

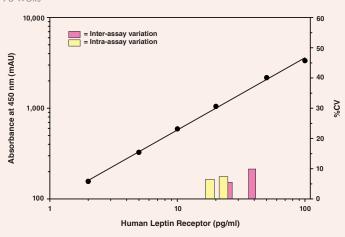
Summary: This EIA utilizes plates coated with a polyclonal antibody specific for mouse/rat leptin. A biotin-labeled polyclonal antibody and streptavidin-horseradish peroxidase are used for detection.

Specificity:

For a full specificity profile, please go to www.caymanchem.com

96 wells

Leptin Receptor (human) EIA Kit[†]

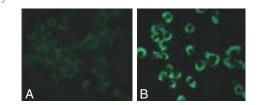

Stability: ≥6 months at 4°C **Limit of Detection:** 0.4 ng/ml

Summary: The assay utilizes plates coated with a monoclonal capture antibody specific for the human leptin receptor and a HRP-conjugated monoclonal antibody for detection.

Specificity:

For a full specificity profile, please go to www.caymanchem.com

96 wells



Lipid Droplets Fluorescence Assay Kit

Stability: ≥1 year at -20°C

Summary: Lipid droplets are a fundamental component of intracellular lipid homeostasis in all cell types and they provide a rapidly mobilized lipid source for many important biological processes. Cayman's Lipid Droplets Fluorescence Assay can be used to study regulators of lipid droplet biogenesis. The main advantage of this assay is that the green fluorescence of Nile Red is both very sensitive and specific for lipid droplets.

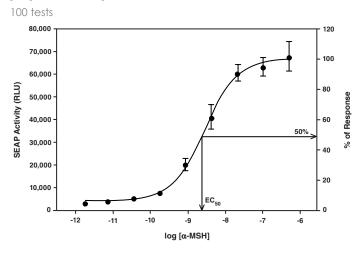
480 tests

Oleic Acid dramatically induces lipid droplet accumulation in neuro-2a cells. Neuro-2a cells were treated with vehicle (control, Panel A) or 400 µM oleic acid (treated, Panel B) for 24 hours and then processed for lipid droplet staining.

† SPI-BIO Assays are available through Cayman Chemical only within North & South America and Asia; elsewhere contact Bertin Pharma

Melanocortin-3 Receptor STEP Reporter Assay Kit (Luminescence)

600180

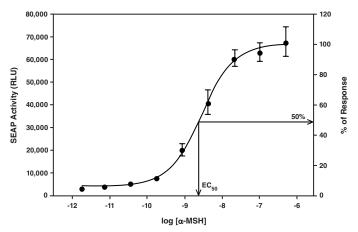

MC3R

10007608

500001

Stability: ≥ 1 year at -20° C

Summary: MC3R helps regulate energy homeostasis and mice lacking MC3R have increased fat mass and reduced lean mass. Therefore, agonists that selectively activate MC3R might have beneficial effects related to weight gain and glucose metabolism. This assay consists of a 96-well plate coated with both MC3R and SEAP reporter constructs. Cells grown on the STEP complex will express MC3R at the cell surface. Binding of agonists to MC3R initiates a signaling cascade resulting in expression of SEAP. SEAP activity is measured following addition of a luminescence-based alkaline phosphatase substrate provided in the kit.



Melanocortin-4 Receptor STEP Reporter Assay Kit (Luminescence) 600190 MC4R

Stability: ≥1 year at -20°C

Summary: MC4R has important roles in weight regulation, sexual function, and inflammation. Mice deficient in MC4R have increased lipid deposition associated with elevated adiposity, while mutations in MC4R in humans are associated with early onset or severe obesity. This assay consists of a 96-well plate coated with both MC4R and SEAP reporter constructs. Cells grown on the STEP complex will express MC4R at the cell surface. Binding of agonists to MC4R initiates a signaling cascade resulting in expression of SEAP. SEAP activity is measured following addition of a luminescence-based alkaline phosphatase substrate provided in the kit.

100 tests

† SPI-BIO Assays are available through Cayman Chemical only within North & South America and Asia; elsewhere contact Bertin Pharma

Thomas G. Brock, Ph.D. | The PPAR α Story

Me

When peroxisomes were first studied, in the 1960's, as a subcellular organelle similar in structure to lysosomes, they were found to consume oxygen to initiate the metabolism of long chain fatty acids through β -oxidation. Additionally, peroxisomes use molecular oxygen to enzymatically produce hydrogen peroxide, which, with peroxidase, is used to oxidize a variety of substrates, including alcohols and toxic compounds. Excess hydrogen peroxide is decomposed by peroxisomal catalase. While peroxisomes may be found in many cells and tissues, they are particularly important in the liver and kidney.

Peroxisomes can multiply prior to cell division, doubling in number so that mother and daughter cells have a full complement.¹ More relevant to this article, peroxisomes can form *de novo* while a cell is in interphase. Specific peroxisomal membrane proteins are synthesized in the endoplasmic reticulum (ER), with pre-peroxisomes budding off from the ER to form immature organelles. These may fuse with each other or with mature peroxisomes, while enlarged mature peroxisomes may undergo fission to generate smaller peroxisomes. Lumenal (matrix) proteins and additional membrane proteins are imported from the cytoplasm directly into peroxisomes.¹

As peroxisomal proliferation can coincide with mitosis and excess cell division is a hallmark of cancer, there was early interest that compounds that promoted peroxisomes to multiply might be associated with carcinogenesis. Moreover, it was known that clofibrate, a compound with lipid-lowering properties, causes enlargement of the liver (hepatomegaly) in rats that is associated with a profound increase in the number of peroxisomes in liver cells. Another lipidlowering drug that causes peroxisomal proliferation, nafenopin, was found to cause hepatocellular carcinomas in mice with acatalasemia (a genetic disorder leading to a deficiency of catalase in erythrocytes) but not in wild type mice.² In the 1980's, concern moved from therapeutics to environmental factors when various phthalate and adipate esters, used as industrial plasticizers, were discovered to be peroxisome proliferator carcinogens in mice and rats.³ None of these compounds were found to directly cause DNA damage, the prevalent modus operandi for known carcinogens at the time. By and large, it was thought that an overabundance of peroxisomes could lead to the generation of oxygen radicals, which then would produce the DNA damage necessary for carcinogenesis. Today, with a deeper understanding of how these compounds work, it is understood that normal proliferation of peroxisomes, like normal cell proliferation, does not cause cancer. Instead, it is only with dysfunctional signaling that pathologies occur. In fact, enhanced peroxisomal proliferator signaling is, for some diseases, therapeutic.

The First Peroxisome Proliferator-Activated Receptor

By the end of the 1980's, it was known that clofibrate, phthalate esters, and other compounds that caused dramatic proliferation of hepatic peroxisomes as well as liver hyperplasia also increased transcription of genes required for the peroxisomal β-oxidation of long chain fatty acids and genes of the cytochrome p450 IV family. Narendra Lalwani had discovered a clofibrateand nafenopin-binding protein in rat liver, suggesting that peroxisome proliferators might act via soluble receptors, like steroid hormones.⁴ In 1990, Isabelle Issemann and Stephen Green reported the cloning of a novel member of the steroid hormone receptor superfamily that was activated by peroxisome proliferators.⁵ This protein, named a peroxisome proliferator activated receptor (PPAR), had a DNA-binding domain (DBD) with high sequence identity (46-64%) with known nuclear receptors (Figure 1). A distinct putative ligand-binding domain (LBD) shared highest identity (38%) with the human erb-A-related (ear) receptor hear1. Highest expression of the PPAR message was found in liver, kidney, and heart, with very weak expression in brain and testis. Expression was also reported to occur in brown adipose tissue. Chimeric reporters engineered to combine the putative ligand-binding domain of this new receptor with DNA-binding domains

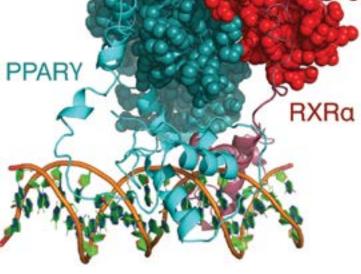


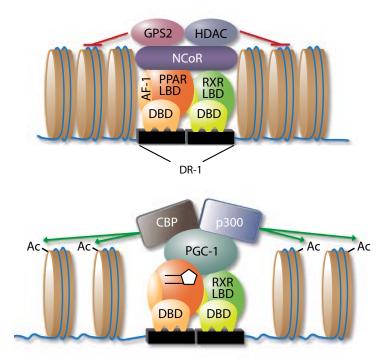
Figure 1. PPARγ (cyan) associated with RXRα (red) bound to DNA. Note the DBDs (helices) fill major grooves on opposite sides of the DNA double helix and the LBDs (displayed in space-filling mode) overlap. From RCSB 3DZY¹⁷

of either the estrogen receptor or the glucorticoid receptor, were used to show that hypolipidemic peroxisome proliferators, including nafenopin, clofibrate, and phthalate esters, activated gene expression as expected. Thus, the first PPAR, later renamed PPAR α , was discovered.

PPARα is activated by a diverse array of compounds (refer to Table). Importantly, some agonists are specific for this isoform, whereas some also activate PPAR β/δ and/or PPARy. While receptor activation causes peroxisome proliferation and hepatomegaly in mice and rats, this does not happen in non-rodent (including human) species. Similarly, PPARa agonists, including the fibrates, do not increase the incidence of liver cancer in humans. In fact, lipid-lowering drugs that act through PPARa, including the fibrates gemfibrozil and fenofibrate, have been used for years and their side effects are well-known (and are unique for each drug). For example, gemfibrozil causes a slight but significant increase in gastrointestinal reactions, while fenofibrate may adversely impact liver function tests. In exchange for these potential complications, PPARa activators potently decrease fatty acid and triglyceride levels. They are commonly used in combination with statins, which lower cholesterol by interfering with the cholesterol biosynthetic pathway. While fibrates are best known to stimulate the β-oxidation of long chain and very long chain fatty acids by peroxisomes for the treatment of hyperlipidemia, they are also used to correct atherogenic dyslipidemia in the context of obesity, diabetes, and coronary heart disease.⁶ Also, clofibrate has recently been shown to prevent nicotine reward and relapse in rats and squirrel monkeys, suggesting that fibrate medications might promote smoking cessation.⁷ Remarkably, although fibrates activate PPARa, direct binding has not been demonstrated.⁶ Moreover, clofibrate activates peroxisomal proliferation in plants like Arabidopsis thaliana, although Arabidopsis lacks a PPARa homolog.8

	Murine Receptor EC₅₀ (µM)		Human Receptor EC ₅₀ (μM)			
Compound	PPAR	PPAR	PPAR /	PPAR	PPAR	PPAR /
WY-14643 [†]	0.63	32	na	5.0	60	35
clofibrate [†]	50	~500	na	55	~500	na
fenofibrate [†]	18	250	na	30	300	na
bezafibrate [†]	90	55	110	50	60	20
GW 9578 [†]	0.005	1.5	2.6	0.05	1.0	1.4
troglitazone [†]	na	0.78	na	na	0.55	na
pioglitazone [†]	na	0.55	na	na	0.58	na
rosiglitazone [†]	na	0.076	na	na	0.043	na
CAY10573 [†]				8	70	500
CAY10599 [†]				4.0	0.05	na
GW 0742 [†]				1.1	2.0	0.001
GW 9578 [†]	0.005	0.15	2.6	0.05	1.0	1.4
GW 7647 [†]	0.001	1.3	2.9	0.006	1.1	6.2
GW 590735 [†]				0.004	2.83	na
CAY10514 [†]				0.173	0.642	

Table. Activity of various PPAR agonists in cell-based transactivation assays.¹⁶ na = not active; [†]available from Cayman


Nuts and Bolts

As noted earlier, PPARs contain distinct domains for DNA and ligand binding. These domains are separated by a stretch of over 100 aa. The amino terminus, referred to as activation function-1 (AF-1), is thought to have a transactivation function, folding back above the DBD to stabilize heterocomplex formation between the LBD and associating proteins. The large (189 aa) LBD contains a leucine zipper region of some 130 aa that is required for heterodimerization of PPAR α with retinoic acid receptor- α (RXR α). RXR α similarly contains a DBD and LBD separated by a hinge region (Figures 1,2). In the classical model of PPAR α signaling, PPAR α is heterodimerized with RXR α on a PPAR response element (PPRE) consisting of direct repeats of AGGTCA separated by a single intervening nucleotide; this direct repeat PPRE is called DR-1 and is one of several that bind RXR α heterodimers.

In the absence of ligand, the PPARα-RXRα dimer associates with a multiprotein complex that blocks the initiation of transcription, including nuclear receptor corepressors (*e.g.*, NCoR1, SMRT), histone deacetylases (HDACs, SIRTs), and G protein pathway suppressor 2. The addition of ligand leads to dissociation of the corepressor complex followed by the recruitment of coactivators, such as PPAR coactivator-1 and the histone acetyltransferases p300 and CREB binding protein. Formation of the PPAR activation complex leads to histone modification (*e.g.*, through acetylation), chromatin relaxation, and altered gene expression. PPARα affects gene expression relevant to altered lipid metabolism, lowering triglycerides and raising high-density lipoprotein in dyslipidemia (see related article on page 4). Natural ligands for PPARα include certain fatty acids, including metabolites of arachidonic acid, (*e.g.*, leukotriene B_4).⁹

Evidence suggests that PPARs can act in other ways. PPAR α can directly interact with numerous proteins other than RXR α and this can occur in either the cytoplasm or nucleus. For example, PPAR α binds directly to c-Jun and p65,¹⁰ proteins which, like PPAR α , heterodimerize with other proteins to form functional transcription factors. These interactions prevent each transcription factor from acting. For example, PPAR α binding to p65 prevents NF- κ Bmediated expression of such genes as iNOS, COX-2, and IL-6, thus diminishing pro-inflammatory signaling. PPAR α also forms DNA-binding heterodimers with other nuclear receptors, such as thyroid hormone receptor (TR) and liver X receptor (LXR), to alter gene expression. Notably, RXR α can also partner with nuclear receptors, including TR and vitamin D3 receptors. This competitively prevents signaling through PPAR α .

Additional information is available in recent reviews.¹¹⁻¹⁵

Figure 2. The classical model of PPAR-RXR signaling, showing the PPAR-RXR corepressor complex (above) and the PPAR-RXR coactivator complex after ligand binding (below)

References

- 1. Hettema, E.H. and Motley, A.M. J. Cell Sci. 122, 2331-2336 (2009).
- 2. Reddy, J.K., Rao, M.S., and Moody, D.E. Cancer Res. 36, 1211-1217 (1976).
- Kluwe, W.M. Environ. Health Perspect. 65, 271-278 (1986).
- 4. Lalwani, N.D., Alvares, K., Reddy, M.K., et al. Proc. Natl. Acad. Sci. USA 84, 5242-5246 (1987).
- 5. Issemann, I. and Green, S. Nature 347, 645-650 (1990).
- 6. Pahan, K. Cell Mol. Life Sci. 63(10), 1165-1178 (2006).
- 7. Panlilio, L.V., Justinova, Z., Mascia, P., et al. Neuropsychopharmacology (2012).
- 8. León, J. Plant Signal. Behav. 3(9), 671-673 (2008).
- 9. Murakami, K., Ide, T., Suzuki, M., et al. Biochem. Biophys. Res. Commun. 260, 609-613 (1999).
- 10. Delerive, P., De Bosscher, K., Besnard, S., et al. J. Biol. Chem. 274(45), 32048-32054 (1999).
- 11. Ament, Z., Masoodi, M., and Griffin, J.L. Genome Med. 4, (2012).
- 12. Choi, J.-M. and Bothwell, A.L.M. Mol. Cells 33, 217-222 (2012).
- 13. Nagy,L., Szanto,A., Szatmari,I., et al. Physiol. Rev. 92, 739-789 (2012)
- 14. Neher, M.D., Weckbach, S., Huber-Lang, M.S., et al. PPAR Res. 2012, 1-13 (2012).
- 15. Thomas, M.C., Jandeleit-Dahm, K.A., and Tikellis, C. PPAR Res. 2012, 1-10 (2012).
- 16. Willson, T.M., Brown, P.J., Sternbach, D.D., et al. J. Med. Chem. 43(4), 528-550 (2000)
- 17. Chandra, V., Huang, P., Hamuro, Y., et al. Nature 456(7220), 350-356 (2008).

Nampt

Nampt is the rate-limiting enzyme in the salvage pathway for the biosynthesis of NAD+ from nicotinamide. Nampt was first described as a pre-B-cell colony enhancing factor. It was later named visfatin, as it was found to be highly enriched in visceral fat, with plasma levels increasing with obesity. The levels of Nampt in serum correlate with body mass index and body fat mass, are increased during inflammation, and are decreased with liver cirrhosis. Extracellular Nampt regulates insulin secretion in β cells by regulating systemic NAD⁺ biosynthesis. Nampt levels and expression in serum, circulating leukocytes, and tissues may be useful biomarkers

Nampt/Visfatin (human) EIA Kit

for inflammation, cancer, obesity, and other diseases.

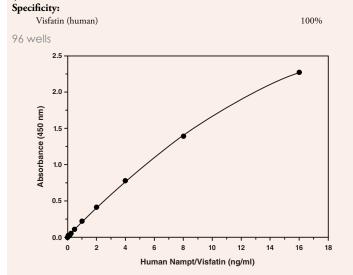
Nicotinamide Phosphoribosyltransferase/Visfatin

Stability: ≥6 months at 4°C Limit of detection: 30 pg/ml

Summary: Cayman's Nampt/Visfatin (human) EIA Kit is an immunometric assay which can be used to measure Nampt/Visfatin in human serum.

Specificity:

Visfatin (human)



Nampt/Visfatin (intracellular; human) EIA Kit 579030

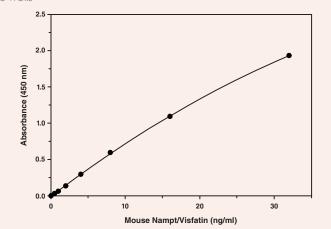
Nicotinamide Phosphoribosyltransferase/Visfatin

Stability: ≥6 months at 4°C Limit of detection: 30 pg/ml

Summary: Cayman's Nampt/Visfatin (intracellular; human) EIA Kit is an immunometric assay which can be used to measure Nampt/Visfatin in human cell lysates.

Nampt/Visfatin (mouse/rat) EIA Kit 579040

Nicotinamide Phosphoribosyltransferase/Visfatin


Stability: ≥6 months at 4°C Limit of detection: 0.5 pg/ml Summary: Cayman's Nampt/Visfatin (mouse/rat) EIA Kit is an immunometric assay which can be used to measure Nampt/Visfatin in mouse or rat serum.

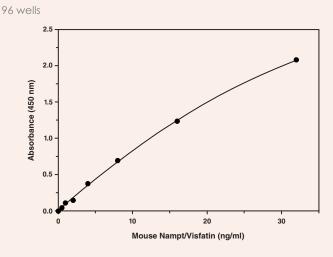
Specificity: Mouse Nampt/Visfatin (mouse) Mouse Nampt/Visfatin (rat)

96 wells

579020

100%

Nampt/Visfatin (intracellular; mouse/rat) EIA Kit


Nicotinamide Phosphoribosyltransferase/Visfatin

Stability: ≥6 months at 4°C Limit of detection: 0.5 pg/ml

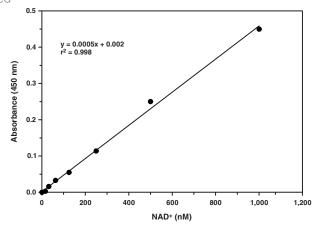
Summary: Cayman's Nampt/Visfatin (intracellular; mouse/rat) EIA Kit is an immunometric assay which can be used to measure Nampt/Visfatin in mouse or rat cell lysates.

Specificity:

Mouse Nampt/Visfatin (mouse)	100%
Mouse Nampt/Visfatin (rat)	100%

NAD⁺/NADH Cell-Based Assav Kit

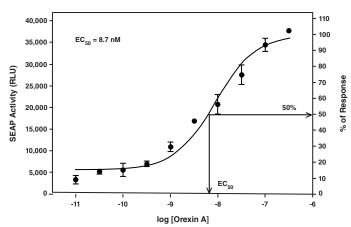
Nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide, reduced **Stability:** ≥6 months at -20°C


Summary: NAD exists in an oxidized form, NAD+, as well as a reduced form, NADH. NAD⁺, the main free form in cells, functions in modulating cellular redox status and by controlling signaling and transcriptional events, making it and related enzymes drug targets for various metabolic disorders. Cayman's NAD+/NADH Cell-Based Assay Kit provides a colorimetric method for measuring intracellular NAD⁺/ NADH in culture cells. In the assay, alcohol dehydrogenase catalyzes the oxidation of alcohol to acetoaldehyde, in which the formed NADH reduces a tetrazolium salt substrate to a highly-colored formazan which absorbs strongly at 450 nm. The amount of formazan produced is proportional to the amount of NAD* in the cell lysate and can be used as an indicator of the cellular NAD⁺ concentration.

100%

100%

579050


Orexin 1 Receptor

STEP Reporter Assay Kit (Luminescence) 600240 OX1R

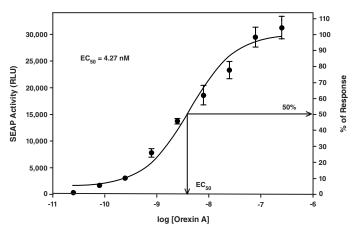
Stability: ≥1 year at -80°C

Summary: OX1R may be an important therapeutic target for treatment of sleep disorders, obesity, emotional stress, and addiction. This assay consists of a 96well plate coated with both OX1R and SEAP reporter constructs. Cells grown on the STEP complex will express OX1R at the cell surface. Binding of agonists to OX1R initiates a signal transduction cascade resulting in expression of SEAP. SEAP activity is measured following addition of a luminescence-based alkaline phosphatase substrate provided in the kit.

100 tests

Orexin 2 Receptor STEP Reporter Assay Kit (Luminescence)

600250


OX2R

600480

Stability: ≥1 year at -80°C

Summary: OX2R may be an important therapeutic target for treatment of sleep disorders, obesity, emotional stress, and addiction. This assay consists of a 96well plate coated with both OX2R and SEAP reporter constructs. Cells grown on the STEP complex will express OX2R at the cell surface. Binding of agonists to OX2R initiates a signal transduction cascade resulting in expression of SEAP. SEAP activity is measured following addition of a luminescence-based alkaline phosphatase substrate provided in the kit.

100 tests

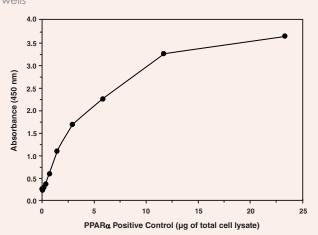
PPAR Transcription Factor Assay Kits

PPARs are ligand-activated transcription factors belonging to the large superfamily of nuclear receptors. PPARa primarily activates genes encoding proteins involved in fatty acid oxidation, while PPARy primarily activates genes directly involved in lipogenic pathway and insulin signaling. Members of the PPAR family are important direct targets of many antidiabetic and hypolipidemic drugs. Cayman's PPAR Transcription Factor Assays are a non-radioactive, sensitive method for detecting specific transcription factor DNA binding activity in nuclear extracts and whole cell lysates.

PPAR α , δ , γ Complete Transcription Factor Assay Kit

10008878

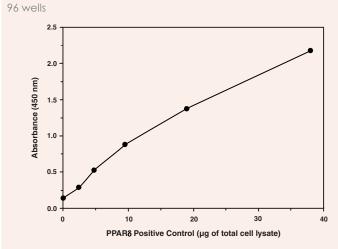
10006915


Stability: ≥1 year at -80°C

Summary: A 96-well assay for measurement of PPAR α , δ , γ DNA binding activity 96 wells

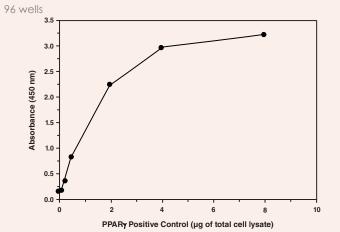
PPARα Transcription Factor Assay Kit

Stability: ≥6 months at -80°C


Summary: A 96-well assay for measurement of PPARa DNA binding activity 96 wells

PPAR_δ Transcription Factor Assay Kit

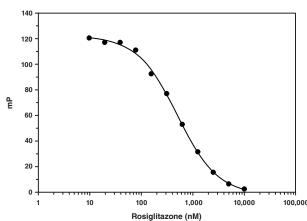
Stability: ≥6 months at -80°C


Summary: A 96-well assay for measurement of PPARS DNA binding activity

PPARy Transcription Factor Assay Kit

Stability: ≥6 months at -80°C

Summary: A 96-well assay for measurement of PPARy DNA binding activity



PPARy Ligand Screening Assay Kit

Stability: ≥6 months at -20°C

Summary: Cayman's PPARy Ligand Screening Assay Kit provides a convenient FP-based single step assay for screening PPARy ligands. In this assay, a ligand of PPARy was conjugated to FITC and is used as the displacement probe. Agonists, and antagonists of PPARy will displace the fluorescent probe leading to a decrease in FP. The assay has been validated using known agonists/ligands of PPARy.

384 wells 1,920 wells

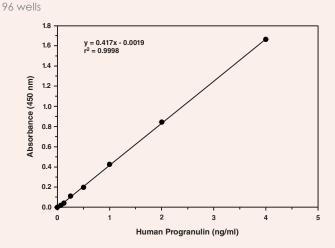
Progranulin

10006914

10006855

10007685

Progranulin (PGRN) is an autocrine growth factor that plays a role in embryonic development, tissue repair, tumorigenesis, and inflammation. Recently, PGRN has been shown to bind directly to tumor necrosis factor receptors where it antagonizes TNF-a signaling, effectively blocking the pathogenesis of inflammatory arthritis in mice. Furthermore, elevated serum concentrations of PGRN are associated with visceral obesity, elevated plasma glucose, and dyslipidemia. In the central nervous system, PGRN is thought to be involved in neurotrophic activity and neuroinflammation.

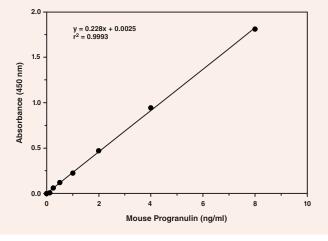

	Progranu	lin (human)) EIA Kit	
--	----------	-------------	-----------	--

Stability: ≥6 months at 4°C Limit of detection: 32 pg/ml

Summary: Cayman's Progranulin (human) EIA Kit is an immunometric assay which can be used to measure progranulin in human serum, plasma, or cell culture supernatants.

Specificity:

Progranulin (human)


Progranulin (mouse) EIA Kit

Stability: ≥6 months at 4°C **Limit of detection:** 60 pg/ml

Summary: Cayman's Progranulin (mouse) EIA Kit is an immunometric assay which can be used to measure progranulin in mouse serum or cell culture supernatants. **Specificity:**

Progranulin (mouse)

96 wells

Resistin

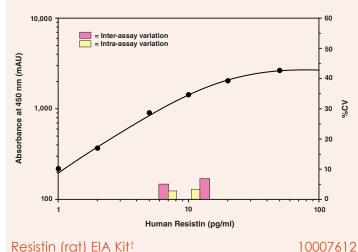
Resistin is a peptide hormone belonging to the class of cysteine-rich secreted proteins termed the RELM family, and is also described as adipose tissue-specific secretory factor (ADSF) and Found in Inflammatory Zone (FIZZ3). Resistin impairs glucose tolerance and insulin action in mice and also inhibits adipogenesis of mouse 3T3-L1 cells. Therefore, resistin has been proposed as an adipocyte secreted factor linking obesity and type 2 diabetes.

Resistin (human) EIA Kit[†] 10007610

ADSF, FIZZ3

500940

500950


100%

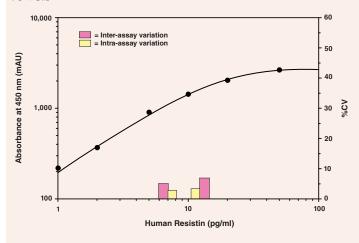
100%

Stability: ≥6 months at 4°C Limit of Detection: 0.1 ng/ml Summary: This EIA is based on a double-antibody sandwich technique for quantification of human resistin.

Specificity: For a full specificity profile, please go to www.caymanchem.com

96 wells

ADSF, FIZZ3


Stability: ≥6 months at 4°C Limit of Detection: 0.05 ng/ml

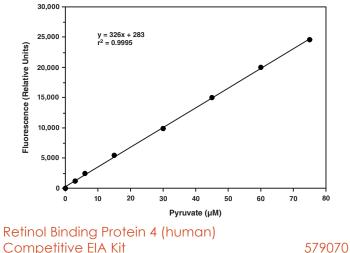
Summary: This EIA is based on a double-antibody sandwich technique for quantification of rat resistin.

Specificity:

For a full specificity profile, please go to www.caymanchem.com

96 wells

Pvruvate Assav Kit


700470

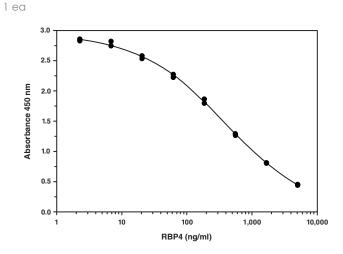
Pvruvic Acid

Stability: ≥6 months at -20°C

Summary: Pyruvate (pyruvic acid) is a key intermediate in cellular metabolic pathways and is derived primarily from glucose via glycolysis. Abnormal blood pyruvate levels are reported in a number of disorders including shock, liver disease, congestive heart failure, diabetes mellitus, thiamine deficiency, and metabolic disorders. Cayman's Pyruvate Assay provides a fluorescence-based method for quantifying pyruvate in biological samples such as serum, plasma, blood, urine, and saliva. It can also be utilized to determine intracellular and extracellular pyruvate concentrations in cell culture samples.

96 wells

Competitive EIA Kit

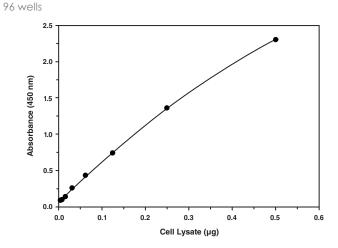

RBP4

Stability: ≥6 months at 4°C **Limit of Detection:** 2.3 ng/ml

Summary: Retinol binding protein (RBP) 4 is a vitamin A transport protein that acts as an adipokine when secreted from adipose tissue. Increased circulating RBP4 levels have been reported in several metabolic complications such as obesity, insulin resistance, metabolic syndrome, and cardiovascular disease. Increased expression of RBP4 positively correlates with increases in pro-inflammatory cytokines and LDL cholesterol in diet-induced obese and hyperlipidemic mice. Reduction of RBP4 has been shown to improve insulin resistance and dyslipidemia. This implicates RBP4 in regulating systemic insulin sensitivity and lipid metabolism, making measurement of serum or plasma RBP4 a useful means to monitor metabolic disorders and to possibly indicate cardiovascular disease risk. Cayman's RBP4 (human) Competitive EIA Kit can be used to measure RBP4 in human plasma, serum, urine, and cell culture supernatants.

Specificity:

For a full specificity profile, please go to www.caymanchem.com

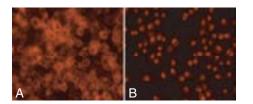


† SPI-BIO Assays are available through Cayman Chemical only within North & South America and Asia; elsewhere contact Bertin Pharma

SREBP-1 Transcription Factor Assay Kit 10010854

Stability: ≥1 year at -80°C

Summary: SREBP-1c acts primarily to activate genes required for fatty acid synthesis, such as acetyl CoA carboxylase, fatty acid synthase, and long chain fatty acid elongase. SREBP-1c has important clinical implications in the treatment of many diseases including obesity, diabetes mellitus, insulin resistance, and nonalcoholic fatty liver disease. Cayman's SREBP-1 Transcription Factor Assay Kit is a non-radioactive, sensitive method for detecting specific transcription factor DNA binding activity in nuclear extracts and whole cell lysates in a 96-well plate format.

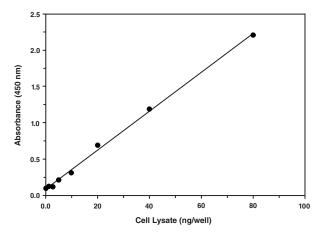


SREBP-2 Cell-Based 10009239 Translocation Assay Kit

Stability: ≥ 1 year at -20° C

Summary: Cayman's SREBP-2 Cell-Based Translocation Assay Kit provides the tools needed to study SREBP-2 movement within whole cells. The kit contains a highly specific SREBP-2 primary antibody together with a DyLightTM (product of Thermo Scientific, Inc.) conjugated secondary antibody in a ready to use format. Also included as a positive control is a cholesterol trafficking inhibitor, U-18666A.

96 wells


Translocation of SREBP-2 into nuclei by U-18666A. RAW 264.7 cells were treated with DMSO (vehicle; Panel A) or 24 µM U-18666A (Panel B) for 72 hours.

SREBP-2 Transcription Factor Assay Kit 10007819

Stability: ≥6 months at -80°C

Summary: SREBP-2 is a transcription factor that performs a critical role in the transcriptional regulation of genes involved in cholesterol synthesis and uptake including HMG-CoA synthase, HMG-CoA reductase, and the LDL receptor. Cayman's ChREBP Transcription Factor Assay Kit is a non-radioactive, sensitive method for detecting specific transcription factor DNA binding activity in nuclear extracts and whole cell lysates in a 96-well plate format.

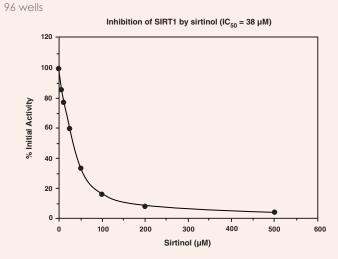
96 wells

Steatosis Colorimetric Assay Kit 10012643 **Stability:** ≥1 year at 4°C

Summary: Steatosis, also known as fatty liver, is a pathological process characterized by abnormal accumulation of lipid within cells. Cayman Chemical's Steatosis Colorimetric Assay provides a convenient tool for evaluating the steatosis risk of drug candidates. In this assay, Oil Red O is used to stain neutral lipids in hepatocytes. Lipid accumulation is then quantified using a plate reader after the dye is extracted from the lipid droplets. Chloroquine is included in the kit as a positive control.

1 ea

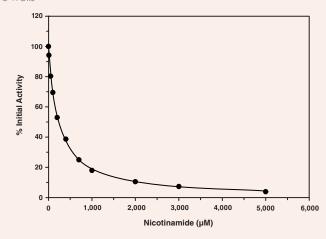
Effect of chloroquine on lipid droplet accumulation in HepG2 cells. Panel A: HepG2 cells treated with vehicle. There are a few lipid droplets in the cells, appearing as red dots. Panel B: HepG2 cells treated with 25 µM chloroguine show significant accumulation of lipid droplets, evident by abundant appearance of red dots visualized by Oil Red O staining.


Sirtuins

The sirtuins represent a distinct class of trichostatin A-insensitive lysyl-deacetylases (class III HDACs) that catalyze a reaction coupling lysine deacetylation to the formation of nicotinamide and O-acetyl-ADP-ribose. Cayman's Direct Fluorescent Screening Assay Kits provide a fluorescence-based method for screening SIRT inhibitors or activators. The procedure requires only two easy steps, both performed in the same microplate. In the first step, the substrate is incubated with human recombinant SIRT along with its co-substrate NAD⁺. Deacetylation sensitizes the substrate such that treatment with the developer in the second step releases a fluorescent product.

SIRT1 Direct Fluorescent Screening Assay Kit

Stability: ≥1 year at -80°C


Summary: A fluorescence-based method for screening SIRT1 inhibitors or activators

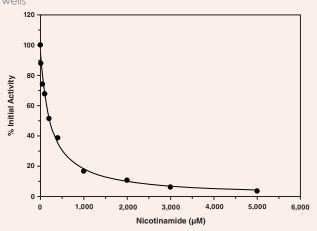
SIRT2 Direct Fluorescent Screening Assay Kit 700280

Stability: ≥1 year at -80°C

Summary: A fluorescence-based method for screening SIRT2 inhibitors or activators 96 wells

47 Kits

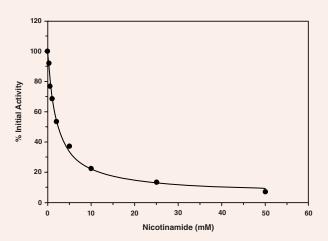
SIRT3 Direct Fluorescent Screening Assay Kit


10011566

700290

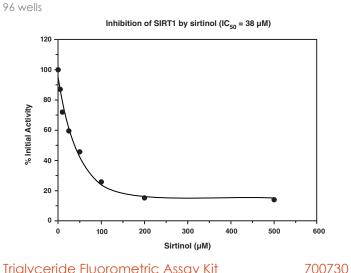
Stability: ≥1 year at -80°C

10010401


Summary: A fluorescence-based method for screening SIRT3 inhibitors or activators 96 wells

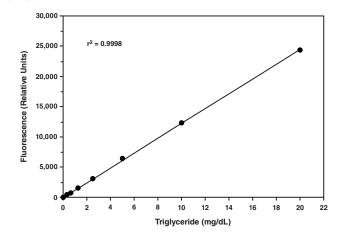
SIRT6 Direct Fluorescent Screening Assay Kit

Stability: ≥1 year at -80°C


Summary: A fluorescence-based method for screening SIRT6 inhibitors or activators 96 wells

SIRT1 FRET-Based Screening Assay Kit

Stability: ≥1 year at -80°C

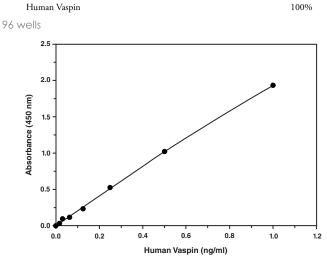

Summary: Cayman's SIRT1 FRET-based Screening Assay Kit provides a fluorescencebased method for screening SIRT1 inhibitors or activators. The procedure requires only two easy steps, both performed in the same microplate. In the first step, the substrate, which is coupled to the fluorophore and quencher, is incubated with human recombinant SIRT1 along with its co-substrate NAD+. Deacetylation sensitizes the substrate such that treatment with the developer in the second step results in the separation of the quencher and fluorophore. The resulting fluorescence is analyzed using an excitation wavelength of 335-345 nm and emission wavelength of 440-465 nm.

Triglyceride Fluorometric Assay Kit

Stability: ≥1 year at -20°C **Limit of Detection:** 0.3 mg/dL (±0.05 mg/dL) Summary: Triglycerides are transported in the blood as core constituents of all lipoproteins, but are major components of triglyceride-rich chylomicrons and very low-density lipoproteins. When required, lipases hydrolyze triglycerides from adipose tissue into fatty acids and glycerol, which enter the blood stream leading to fatty acid oxidation in the mitochondria and peroxisomes to produce energy. The measurement of triglyceride levels, in conjunction with other lipid assays, are useful in the diagnosis of primary and secondary hyperlipoproteinemia, dyslipidemia, and triglyceridemia as well as other diseases involving lipid metabolism or various endocrine disorders. Cayman's Fluorometric Triglyceride Assay provides a fluorescence-based method for quantifying triglycerides in plasma and serum.

96 wells

• Also Available: Triglyceride Colorimetric Assay Kit (10010303)


Vaspin (human) EIA Kit

Visceral Adipose Tissue-Derived Serpin A12 Stability: ≥6 months at 4°C Limit of detection: 12 pg/ml

Summary: Vaspin, designated as visceral adipose tissue-derived serpin A12, is an adipokine with insulin-sensitizing effects. Vaspin mRNA expression is specific for visceral adipose tissues and it is also found circulating in serum. The level of serum vaspin increases with age up to the peak of obesity, body weight, and insulin resistance in OLETF rats, an animal model of abdominal obesity with type 2 diabetes. Treatment with insulin or pioglitazone normalizes serum vaspin concentrations in this model. As such, vaspin may be regarded as a potential biomarker for obesity and impaired insulin sensitivity. Cayman's Vaspin (human) EIA Kit can be used to measure vaspin in human serum, plasma, or cell culture supernatants.

Specificity:

10010991

Proteins

ChREBP DBD (human recombinant) 10009524

ChREBP DNA Binding Domain, Williams-Beuren Syndrome Chromosome Region 14, WS-bHLH **M.:** 38.3 kDa **Purity:** ≥85%

Source: Recombinant GST-tagged ChREBP amino acids 648-741 expressed in E. coli

5 µg

579000

10 µg

25 µg

• Also Available: ChREBP DBD Western Ready Control (10009753)

FABP1 (human recombinant)	10009547
---------------------------	----------

L-FABP, Liver-FABP

M.: 18.3 kDa **Purity**: ≥90% Source: Recombinant N-terminal His-tagged protein expressed in E. coli

25 µg 50 µg 100 µg

FABP1 (rat recombinant)	10005200
<i>L-FABP, Liver-FABP</i> M _r : 18.3 kDa Purity: ≥95% Source: Recombinant N-terminal His-tagged protein o	expressed in <i>E. coli</i>
25 μg 50 μg 100 μg	

FABP2 (human recombinant)

I-FABP, Intestinal-FABP

M.: 19.3 kDa **Purity:** ≥95% Source: Recombinant N-terminal His-tagged protein expressed in E. coli

25 µg 50 µg 100 µg

FABP2 (rat recombinant)

I-FABP, Intestinal-FABP **M**.: 19.3 kDa **Purity**: ≥95%

Source: Recombinant N-terminal His-tagged protein expressed in E. coli

25 µg 50 µg

100 µg

10007432 FABP3 (human recombinant)

H-FABP, Heart-FABP

M.: 19 kDa **Purity**: ≥95% Source: Recombinant N-terminal His-tagged protein expressed in E. coli

25 µg 50 µg 100 µg

FABP4 (human recombinant)

Adipocyte-FABP, A-FABP, ALBP, aP2

M: 18.8 kDa **Purity:** ≥95% Source: Recombinant N-terminal His-tagged protein expressed in E. coli

25 µg 50 µg 100 µg

• Also Available: FABP4 (human recombinant) FITC conjugated (9001068) FABP4 (human recombinant) Western Ready Control (10010463)

Adipocyte-FABP, A-FABP, ALBP, aP2 **M**.: 19.5 kDa **Purity**: ≥95% Source: Recombinant N-terminal His-tagged protein expressed in E. coli 25 µg

FABP4 (mouse recombinant)

50 µg 100 µg

•Also Available: FABP4 (mouse recombinant) Western Ready Control (10009676)

FABP5 (human recombinant)

DA11 FABP, E-FABP, Epidermal-FABP, Keratinocyte FABP, Psoriasis-Associated FABP **M**₋: 18 kDa **Purity**: ≥95%

Source: Recombinant N-terminal His-tagged protein expressed in E. coli 25 µg

50 µg 100 µg

FABP5 (mouse recombinant)

DA11 FABP, E-FABP, Epidermal-FABP, Keratinocyte FABP, Psoriasis-Associated FABP **M**.: 19.3 kDa **Purity**: ≥95%

Source: Recombinant N-terminal His-tagged protein expressed in E. coli

25 µg 50 µg 100 µg

FABP7 (human recombinant)

B-FABP, Brain-FABP **M**_{*r*}: 19.1 kDa **Purity**: ≥90%

Source: Recombinant N-terminal His-tagged protein expressed in E. coli 25 µg

50 µg 100 µg

10009548

10007938

10009549

Fructose 1,6-bisphosphate

(human recombinant)

FBP1, F1,6BPase, FDPase **M:** 36.8 kDa **Purity:** ≥95% Source: Recombinant protein expressed in E. coli

5 µg 10 µg 25 µg

10990 Glucokinase (human liver recombinant)

ATP:D-Hexose 6-Phosphotransferase GCK, Hexokinase D, Human Hexokinase IV isoform 2 **M**.: 53.2 kDa **Purity**: ≥85% Source: Active recombinant C-terminal FLAG-tagged protein expressed in E. coli

5 µg 10 µg 25 µg

Glucokinase (human pancreatic recombinant) 10989

ATP:D-Hexose 6-Phosphotransferase GCK, Hexokinase D, Human Hexokinase IV isoform 1 **M**.: 52.8 kDa **Purity**: ≥90%

Source: Active recombinant C-terminal FLAG-tagged protein expressed in E. coli 5 µg

10 µg 25 µg

10010364

10007433

10009551

11104

10005191

Proteins

50 Cayman Chemical caymanchem.com Proteins

Hormone Sensitive Lipase		Serum Retinol Binding Protein 4
(human recombinant)	10664	(human recombinant)
<i>HSL, LIPE</i> M r: 118.3 kDa Purity: ≥80% Source: Active recombinant N-terminal His-tagged protein expres	sed in Sf21 insect cells	<i>RBP4, sRBP4</i> M_r: 21 kDa Purity: ≥95% Source: Recombinant His-tagged protein expresse
25 µg		25 µg
50 µg		50 µg
100 hB		100 µg
11β-Hydroxysteroid Dehydrogenase	10007815	SIRT1 (human recombinant)
<i>11β-HSD, HSD11β</i> M_r: 31.4 kDa Purity: ≥95%		NAD-dependent Deacetylase 1, Silent Information Regu Sirtuin 1
Source: Active recombinant N-terminal His-tagged protein exp	pressed in <i>E. coli</i>	Mr : 89.2 kDa Purity: ≥60%
25 μg 50 μg		Source: Active recombinant N-terminal GST-tag expressed in <i>E. coli</i>
100 µg		25 units
		50 units
PPARα LBD (human recombinant)	10009088	100 units
PPARα Ligand Binding Domain		SIRT2 (human recombinant)
M_r: 34 kDa Purity: ≥90% Source: Recombinant His-tagged protein expressed in <i>E. coli</i>		NAD-dependent Deacetylase 2, Silent Information
25 μg		Protein 2, Sirtuin 2
23 μg 50 μg		M_r: 44.2 kDa Purity: ≥90%
100 µg		Source: Active recombinant N-terminal His-tage expressed in <i>E. coli</i>
	10007451	*
PPARδ (human recombinant)	10007451	25 µg 50 µg
<i>FAAR, NUC1, Nuclear Hormone Receptor 1, PPARβ</i> M_r: 54 kDa Purity: ≥95%		100 µg
Source: Recombinant protein expressed in Sf21 cells		
10 µg		SIRT3 (human recombinant)
25 μg 50 μg		Mitochondrial Nicotinamide Adenine Dinuclear-dep Deacetylase 3, Silent Information Regulator 3, SIR2L
•Also Available: PPARδ Western Ready Control (10009568)		M _r : 37 kDa Purity : ≥90% Source: Active recombinant N-terminal His-tagg expressed in <i>E. coli</i>
PPARγ FL (human recombinant from E. C	<i>oli</i>) 61700	25 µg
PPARy Full Length		50 μg
M _{<i>r</i>} : ~60 kDa Purity: ≥90%		100 µg
Source: Recombinant N-terminal His-tagged protein expressed	l in E. coli	SIDIA (humana sa sa sahin sat)
5 µg		SIRT4 (human recombinant)
10 μg 25 μg		NAD-dependent ADP-ribosyltransferase Sirtuin 4, SIR2L4, Sir2-like Protein 4, Sirtuin 4
50 µg		M _r : 61.9 kDa Purity: ≥95%
		Source: Recombinant N-terminal GST-tagged SI
PPARγ FL (human recombinant	1000007	25 µg
from Sf21 cells)	10009987	50 µg
<i>PPARγ Full Length</i> M,: -60 kDa Purity: ≥80%		100 µg
Source: Recombinant N-terminal His-tagged protein expressed	l in Sf21 cells	SIRT5 (human recombinant)
5 µg	5	NAD-dependent Deacetylase 5, Silent Information
10 µg		Protein 5, Sirtuin 5
25 µg		M _r : 60.6 kDa Purity: ≥90%
50 µg		Source: Recombinant N-terminal GST-tagged SI
PPARγ LBD (human recombinant)	10007941	25 µg 50 µg
PPARγ Ligand Binding Domain		100 µg
M _r : 34 kDa Purity: ≥90%		
Source: Recombinant N-terminal His-tagged protein expressed	l in <i>E. coli</i>	SIRT6 (human recombinant)
25 µg		NAD-dependent Deacetylase 6, Silent Information
50 µg		Protein 6, Sirtuin 6 M : 43.7 kDa Purity >95%
100 µg		M _r : 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-ta:

M; 21 kDa Purity: ≥95% Source: Recombinant His-tagged protein expressed in <i>E. coli</i> 25 μg 50 μg 100 μg SIRT1 (human recombinant) 1001119 <i>NAD-dependent Deacetylase 1, Silent Information Regulator 2, SIR2L1, SIR2-like Protein</i> <i>Sintini</i> 1 M; 89.2 kDa Purity: ≥60% Source: Active recombinant N-terminal GST-tagged SIRT1 amino acids 193-74 expressed in <i>E. coli</i> 25 units 50 units 5	(human recombinant)	10007818
Source: Recombinant His-tagged protein expressed in <i>E. coli</i> 25 µg 100 µg SIRT1 (human recombinant) 1001119 MAD-dependent Deacetylase 1, Silent Information Regulator 2, SIR2L1, SIR2-like Protein Sirtuin 1 M; 89.2 kDa Purity: >60% Source: Active recombinant N-terminal GST-tagged SIRT1 amino acids 193-74 expressed in <i>E. coli</i> 25 units 50 units 50 units 50 units 5100 units SIRT2 (human recombinant) 1001119 MAD-dependent Deacetylase 2, Silent Information Regulator 2, SIR2L2, SIR2L2, SIR2-Li Protein 2, Sirtuin 2 M; 44.2 kDa Purity: >90% Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-38 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT3 (human recombinant) 1001119 Mitochomdrial Nicotinamide Adenine Dinuclear-dependent Deacetylase 3, Sirtuin 3 M; 37 kDa Purity: >90% Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT4 (human recombinant) 1031 MAD-dependent ADP-ribos/transferats Sirtuin 4, Silent Information Regulator 4, Silent Information Regulator 5, SIR2L5, SIR2L5, SIR2L4, SiZ-Kile Protein 3, Sirtuin 4 M; 61.9 kDa Purity: >95% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT5 (human recombinant) 1031 MAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5,	RBP4, sRBP4	
25 μg 50 μg 50 μg 50 μg 50 KRT1 (human recombinant) 1001119 NAD-dependent Deacetylae 1, Silent Information Regulator 2, SIR2L1, SIR2-like Protein Simin 1 M; 89.2 KDa Purity: 260% Source: Active recombinant N-terminal GST-tagged SIRT1 amino acids 193-74 sepressed in <i>E</i> . coli 25 units 50 units 1001119 NAD-dependent Deacetylae 2, Silent Information Regulator 2, SIR2L2, SIR2-Li Protein 2, Sirtuin 2 M: 44.2 KDa Purity: 290% Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-36 Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 101-35 50 μg 100 μg SIRT3 (human recombinant) 1001119 Mitochondrial Nicotinamide Adenine Dinuclear-dependent Deacetylae, NAD-depende Deacetylae 3, Silent Information Regulator 3, SIR2L3, SIR2-like Protein 3, Sirtuin 3 M; 37 KDA Purity: 290% Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 Sign 100 μg SIRT4 (human recombinant) 1031 NAD-dependent ADP-ribosyltrangfraes Sirtuin 4, Silent Information Regulator 5, SIR2L5, SIR2-Li Sign 100 μg SIRT4 (human recombinant) 1031 NAD-dependent ADP-ribosyltrangfraes Sirtuin 4, Silent Information Regulator 5, SIR2L5, SIR2-Li Sign 10, μg SIRT5 (human recomb		
50 μg SIRT1 (human recombinant) 1001119 MAD-dependent Deacetylase 1, Silent Information Regulator 2, SIR211, SIR2-like Protein Simuin 1 M; 89.2 kDa Puriy: ≥60% Source: Active recombinant N-terminal GST-tagged SIRT1 amino acids 193-74 expressed in <i>E. coli</i> 25 units S0 units 000 units SIRT2 (human recombinant) 1001119 MAD-dependent Deacetylase 2, Silent Information Regulator 2, SIR212, SIR2-Li, SIR2-L		;
100 µg SIRT1 (human recombinant) N2D-dependent Deacetylase 1, Silent Information Regulator 2, SIR2L1, SIR2-like Protein Strain 1 M3; 89.2 kDa Purity: ≥60% Source: Active recombinant N-terminal GST-tagged SIRT1 amino acids 193-74 expressed in <i>E. coli</i> 25 units 50 units 100 units SIRT2 (human recombinant) NDD-dependent Deacetylate 2, Silent Information Regulator 2, SIR2L2, SIR2-Li Ny, 44.2 kDa Purity: ≥90% Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-38 expressed in <i>E. coli</i> 25 µg 00 µg SIRT3 (human recombinant) 100 µg SIRT3 (human recombinant) 00 µg Surce: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 expressed in <i>E. coli</i> 25 µg 00 µg SIRT4 (human recombinant) 00 µg SIRT4 (hum	25 µg	
SIRT1 (human recombinant) 1001119 M2-dependent Deaceylase 1, Silent Information Regulator 2, SIR2L1, SIR2-like Protein Strain 1 M; 89.2 KDa Purity: 260% Source: Active recombinant N-terminal GST-tagged SIRT1 amino acids 193-74 expressed in <i>E. coli</i> 25 units 25 units 1001119 M2-dependent Deacetylase 2, Silent Information Regulator 2, SIR2L2, SIR2-like 25 Units 100 units 1001119 M2-dependent Deacetylase 2, Silent Information Regulator 2, SIR2L2, SIR2-like 25 Units Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-38 expressed in <i>E. coli</i> 25 Up 25 up 50 up 1001119 Mitachondrial Nicotinamide Adenine Dimetaer-dependent Deacetylase, NAD-depende Deacetylase 3, Silent Information Regulator 3, SIR2L3, SIR2-like Protein 3, Sirruin 3 M3 fX bDa Purity: 290% Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 expressed in <i>E. coli</i> 25 up 50 up 100119 SIRT4 (human recombinant 10311 M4D-dependent ADP-ribosyltransferace Struin 4, Silent Information Regulator 5, SIR2L5, SIR2-L5, SIR2		
ND-dependent Deacetylase 1, Silent Information Regulator 2, SIR2L1, SIR2-like Protein Sirnin 1 M; 89.2 KDa Purity: 260% Source: Active recombinant N-terminal GST-tagged SIRT1 amino acids 193-74 expressed in <i>E. coli</i> 25 units 50 units 100 units SIRT2 (human recombinant) 100 units SIRT2 (human recombinant) NAD-dependent Deacetylate 2, Silent Information Regulator 2, SIR2L2, SIR2-Li Protein 2, Sirtuin 2 M; 44.2 kDa Purity: 290% Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-36 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT3 (human recombinant) 100 µg SIRT4 (human recombinant) Mitochondrial Nicotinamide Ademine Dinuclear-dependent Deacetylase, NAD-dependent Deacetylase 3, Silent Information Regulator 3, SIR2L3, SIR2-like Protein 3, Sirtuin 3 M; 37 kDa Purity: 290% Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT4 (human recombinant) 100 µg SIRT4 (human reco	Too μg	
Struin I M: 89.2 kDa Purity: ≥60% Source: Active recombinant N-terminal GST-tagged SIRT1 amino acids 193-74 expressed in <i>E. coli</i> 25 units 500 units SIRT2 (human recombinant) 100 units SIRT2 (human recombinant) 100 units Surce: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-36 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT3 (human recombinant) 100 µg SIRT4 (human recombinant) 100 µg SIRT4 (human recombinant) 1031 NAD-dependent ADP-ribosyltransferse Sirtuin 4, Silent Information Regulator -SIR2L4, Sir2-like Protein 3, Sirtuin 3 M: 61.9 kDa Purity: ≥9% Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 µg 100 µg SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, S	SIRT1 (human recombinant)	10011190
Struin I M: 89.2 kDa Purity: ≥60% Source: Active recombinant N-terminal GST-tagged SIRT1 amino acids 193-74 expressed in <i>E. coli</i> 25 units 500 units SIRT2 (human recombinant) 100 units SIRT2 (human recombinant) 100 units Surce: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-36 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT3 (human recombinant) 100 µg SIRT4 (human recombinant) 100 µg SIRT4 (human recombinant) 1031 NAD-dependent ADP-ribosyltransferse Sirtuin 4, Silent Information Regulator -SIR2L4, Sir2-like Protein 3, Sirtuin 3 M: 61.9 kDa Purity: ≥9% Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 µg 100 µg SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, S	NAD-dependent Deacetylase 1, Silent Information Regulator 2, SIK	22L1, SIR2-like Protein
Source: Active recombinant N-terminal GST-tagged SIRT1 amino acids 193-74 expressed in <i>E. coli</i> 25 units 50 units 100 units SIRT2 (human recombinant) 1001119 NAD-dependent Deacetylase 2, Silent Information Regulator 2, SIR2L2, SIR2-lii Protein 2, Sirtuin 2 M; 44.2 kDa Purity: 290% Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-38 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT3 (human recombinant) 1001119 Mitochomdrial Nicotinamide Adenine Dinuclear-dependent Deacetylase, NAD-depende Deacetylase 3, Silent Information Regulator 3, SIR2L3, SIR2-like Protein 3, Sirtuin 3 M; 37 kDa Purity: 290% Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT4 (human recombinant) 1031 NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator - SIR2L4, Sir2-like Protein 4, Sirtuin 4 M; 61.9 kDa Purity: 295% Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 µg 50 µg 100 µg SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator - SIR2L5, SIR2L5, SIR2-L5, SIR2-L5, SIR2-L5, SIR2-L5, Protein 5, Sirtuin 5 M; 60.6 kDa Purity: 290% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-L5, Protein 5, Sirtuin 5 M; 60.6 kDa Purity: 290% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-L6, SIR2-L6, SIR2-L6, SIR2-L6, SIR2-L5, Protein 6, Sirtuin 5 M; 43.7 kDa Purity: 290% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg	Sirtuin 1	
expressed in <i>E. coli</i> 25 units 50 unit		
SIRT2 (human recombinant) 1001119 NAD-dependent Deacetylase 2, Silent Information Regulator 2, SIR2L2, SIR2-Li Protein 2, Sirtain 2 M; 442 kDA Purity: 290% Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-38 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT3 (human recombinant) 1001119 Mitochondrial Nicotinamide Ademine Dinuclear-dependent Deacetylase, NAD-dependent Deacetylase 3, Silent Information Regulator 3, SIR2L3, SIR2-like Protein 3, Sirtuin 3 M; 37 kDa Purity: 290% Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-39 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT4 (human recombinant) 1031 NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator 5 SIR2L4, Sir2-like Protein 4, Sirtuin 4 M; 61.9 kDa Purity: 295% Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 µg 50 µg 100 µg SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Li Protein 5, Sirtuin 5 M; 60.6 kDa Purity: 290% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Li Protein 5, Sirtuin 5 M; 60.6 kDa Purity: 290% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-Li Protein 6, Sirtuin 5 M; 60.6 kDa Purity: 290% Source: Recombinant N-terminal GST-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg 50 µg		l amino acids 193-/4
50 units 100 units SIRT2 (human recombinant) 1001119 NAD-dependent Deacetylase 2, Silent Information Regulator 2, SIR2L2, SIR2-lik Protein 2, Sirtuin 2 M; 44.2 kDa Purity: $\geq 90\%$ Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-38 expressed in <i>E. coli</i> 25 µg 100 µg SIRT3 (human recombinant) 1001119 Mitochondrial Nicotinamide Adenine Dinuclear-dependent Deacetylase, NAD-dependent Deacetylase, 3, Silent Information Regulator 3, SIR2L3, SIR2-like Protein 3, Sirtuin 3 M; 37 kDa Purity: $\geq 90\%$ Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT4 (human recombinant) 1031 NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator 5 SIR2L4, Sir2-like Protein 4, Sirtuin 4 M; 61.9 kDa Purity: $\geq 95\%$ Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 µg 50 µg 100 µg 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-like Protein 5 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-like Protein 5 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-like Protein 5 1031	*	
100 units1001119NAD-dependent Deacetylase 2, Silent Information Regulator 2, SIR2L2, SIR2-li Protein 2, Siruin 2M; 44.2 kDa Purity: $\geq 90\%$ Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-38 expressed in <i>E. coli</i> 25 µg25 µg100 µgIO01119Mitochondrial Nicotinamide Adenine Dinuclear-dependent Deacetylase, NAD-dependen Deacetylase 3, Silent Information Regulator 3, SIR2L3, SIR2-like Protein 3, Sirtuin 3 M; 37 kDa Purity: $\geq 90\%$ IO0119Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 expressed in <i>E. coli</i> IO31SIRT4 (human recombinant)IO31NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator - SIR2L4, Sir2-like Protein 4, Sirtuin 4 M; 61.9 kDa Purity: $\geq 95\%$ IO31NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Li Protein 5, Sirtuin 5 M; 60.6 kDa Purity: $\geq 90\%$ IO31NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Li Protein 5, Sirtuin 5 M; 60.6 kDa Purity: $\geq 90\%$ IO31NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Li Protein 5, Sirtuin 5 M; 60.6 kDa Purity: $\geq 90\%$ IO31NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L6, SIR2-Li Protein 5, Sirtuin 5 M; 60.6 kDa Purity: $\geq 90\%$ IO31NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-Li Protein 6, Sirtuin 6 M; 43.7 kDa Purity: $\geq 95\%$ IO31NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-Li Protein 6, Sirtuin 6 M; 43.7 kDa Purity: $\geq 95\%$ IO31NAD-dependent Deacetylase 6, Silent Information Regulator 6,		
SIRT2 (human recombinant)1001119 $NAD-dependent Deacetylase 2, Silent Information Regulator 2, SIR2L2, SIR2-lieProtein 2, Sirtuin 2M; 44.2 kDa Purity; >90%Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-38expressed in E. coli25 µ950 µ9100 µ9SIRT3 (human recombinant)1001119Mitochondrial Nicotinamide Adenine Dinuclaar-dependent Deacetylase, NAD-dependenDeacetylase 3, Silent Information Regulator 3, SIR2L3, SIR2-like Protein 3, Sirtuin 3M; 37 kDa Purity; >90%Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35expressed in E. coli25 µ950 µ9100 µ9SIRT4 (human recombinant)1031NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator -SIR2L4, Sir2-like Protein 4, Sirtuin 4M; 61.9 kDa Purity; >95%Source: Recombinant N-terminal GST-tagged SIRT4 purified from E. coli25 µ950 µ9100 µ9SIRT5 (human recombinant)1031NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-LieProtein 5, Sirtuin 5M; 60.6 kDa Purity; ≥05%Source: Recombinant N-terminal GST-tagged SIRT5 expressed in E. coli25 µ950 µ9100 µ9SIRT5 (human recombinant)1031NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-LieProtein 5, Sirtuin 5M; 60.6 kDa Purity; ≥00%Source: Recombinant N-terminal GST-tagged SIRT5 expressed in E. coli25 µ9100 µ9SIRT6 (human recombinant)1031NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-LieProtein 6, Sirtuin 6M; 43.7 k$		
NAD-dependent Deacetylase 2, Silent Information Regulator 2, SIR2L2, SIR2-lin Protein 2, Sirtuin 2 M; 44.2 kDa Purity: $\geq 90\%$ Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-38 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT3 (human recombinant) 100 µg SIRT3 (human recombinant) 100 µg Silent Information Regulator 3, SIR2L3, SIR2-like Protein 3, Sirtuin 3 M; 37 kDa Purity: $\geq 90\%$ Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT4 (human recombinant) 1031 NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator SIR2L4, Sir2-like Protein 4, Sirtuin 4 M; 61.9 kDa Purity: $\geq 95\%$ Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 µg 50 µg 100 µg SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-like Protein 5, Sirtuin 5 M; 60.6 kDa Purity: $\geq 90\%$ Source: Recombi		
NAD-dependent Deacetylase 2, Silent Information Regulator 2, SIR2L2, SIR2-lin Protein 2, Sirtuin 2 M; 44.2 kDa Purity: $\geq 90\%$ Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-38 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT3 (human recombinant) 100 µg SIRT3 (human recombinant) 100 µg Silent Information Regulator 3, SIR2L3, SIR2-like Protein 3, Sirtuin 3 M; 37 kDa Purity: $\geq 90\%$ Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT4 (human recombinant) 1031 NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator SIR2L4, Sir2-like Protein 4, Sirtuin 4 M; 61.9 kDa Purity: $\geq 95\%$ Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 µg 50 µg 100 µg SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-like Protein 5, Sirtuin 5 M; 60.6 kDa Purity: $\geq 90\%$ Source: Recombi	SIRT2 (human recombinant)	1001119
Protein 2, Sirtuin 2 M; 44.2 kDa Purity: ≥90% Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-38 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT3 (human recombinant) 100 µg SIRT3 (human recombinant) 100 µg Silent Information Regulator 3, SIR21,3, SIR2-like Protein 3, Sirtuin 3 M; 37 kDa Purity: ≥90% Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT4 (human recombinant) 1031 NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator 5 SIRI4, Sir2-like Protein 4, Sirtuin 4 M; 61.9 kDa Purity: ≥95% Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 µg 50 µg 100 µg SIRI5 (human recombinant) NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Lie Protein 5, Sirtuin 5 M; 60.6 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µ	· · · · · · · · · · · · · · · · · · ·	
M; 44.2 kDa Purity: ≥90% Source: Active recombinant N-terminal His-tagged SIRT2 amino acids 2-38 expressed in <i>E. coli</i> 25 μg 50 μg 100 μg SIRT3 (human recombinant) 1001119 Mitochondrial Nicotimamide Adenine Dinuclear-dependent Deacetylase, NAD-dependent Deacetylase 3, Silent Information Regulator 3, SIR21.3, SIR2-like Protein 3, Sirtuin 3 M; 37 kDa Purity: ≥90% Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 expressed in <i>E. coli</i> 25 μg 50 μg 100 μg SIRT4 (human recombinant) 1031 NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator - SIR214, Sir2-like Protein 4, Sirtuin 4 M; 61.9 kDa Purity: ≥95% Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 μg 50 μg 100 μg SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Li Protein 5, Sirtuin 5 M; 60.6 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 μg 50 μg 100 μg SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Li Protein 5, Sirtuin 5 M; 60.6 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 μg 50 μg 100 μg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-Li Protein 6, Sirtuin 6 M; 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 μg 50 μg		2, 011222, 0112-114
expressed in <i>E. coli</i> 25 µg 50 µg 5	M _r : 44.2 kDa Purity: ≥90%	
Sign 3 100 µg SIRT3 (human recombinant) 1001119 Mitochondrial Nicotimamide Adenine Dinuclear-dependent Deacetylase, NAD-dependent Deacetylase 3, Silent Information Regulator 3, SIR213, SIR2-like Protein 3, Sirtuin 3 M; 37 kDa Purity: ≥90% Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 25 µg 50 µg 100 µg SIRT4 (human recombinant) 1031 NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator 5 SIR14 (human recombinant) 1031 NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator 5 SIRT5 (human recombinant) 104 µg Source: Recombinant N-terminal GST-tagged SIRT4 purified from E. coli 25 µg 50 µg 100 µg SIRT5 (human recombinant) NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Lip Protein 5, Sirtuin 5 M; 60.6 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in E. coli 25 µg 50 µg 100 µg SIRT6 (human recombinant) 1031 NAD-dependent Deacetyl		2 amino acids 2-38
50 μg 100 μg SIRT3 (human recombinant) 1001119 Mitochondrial Nicotinamide Adenine Dinuclear-dependent Deacetylase, NAD-dependent Deacetylase 3, Silent Information Regulator 3, SIR2L3, SIR2-like Protein 3, Sirtuin 3 M; 37 kDa Purity: ≥90% Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 25 μg 50 μg 100 μg SIRT4 (human recombinant) 100 μg SIRT4 (human recombinant) 1031 NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator 5 SIRI24, Sir2-like Protein 4, Sirtuin 4 M; 61.9 kDa Purity: ≥95% Source: Recombinant N-terminal GST-tagged SIRT4 purified from E. coli 25 μg 50 μg 100 μg SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Lis Protein 5, Sirtuin 5 100 μg SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Lis Protein 5, Sirtuin 5 100 μg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-Lis	expressed in <i>E. coli</i>	
100 μg SIRT3 (human recombinant) Mitochondrial Nicotinamide Adenine Dinuclear-dependent Deacetylase, NAD-dependen Deacetylase 3, Silent Information Regulator 3, SIR213, SIR2-like Protein 3, Sirtuin 3 Mi; 37 KDa Purity: ≥90% Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-39 expressed in <i>E. coli</i> 25 μg 50 μg 100 μg SIRT4 (human recombinant) NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator - SIR2L4, Sir2-like Protein 4, Sirtuin 4 M; 61.9 kDa Purity: ≥95% Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 μg 50 μg 100 μg SIRT5 (human recombinant) NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Like Protein 5, Sirtuin 5 Mitochondright 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Like Protein 5, Sirtuin 5 Mito 60 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 μg 100 μg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2L6, SIR2-Like Protein 6, Sirtuin 6 Mit 61, Purity: ≥90% 100	25 µg	
SIRT3 (human recombinant) 1001119 Mitochondrial Nicotinamide Adenine Dinuclear-dependent Deacetylase, NAD-depender Deacetylase 3, Silent Information Regulator 3, SIR21.3, SIR2-like Protein 3, Sirtuin 3 Mr, 37 kDa Purity: ≥90% Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-39 Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-39 25 µg 50 µg 100 µg SIRT4 (human recombinant) 1031 NAD-dependent ADP-riboyItransferase Sirtuin 4, Silent Information Regulator 5 SIR14, Sir2-like Protein 4, Sirtuin 4 Mr, 61,9 kDa Purity: ≥95% Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 µg 00 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Lis 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Lis 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Lis 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Lis 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-Lis 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-Lis 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-Lis 1031	50 µg	
Mitochondrial Nicotinamide Adenine Dinuclear-dependent Deacetylase, NAD-dependent Deacetylase 3, Silent Information Regulator 3, SIR2L3, SIR2-like Protein 3, Sirtuin 3M; 37 kDa Purity: $\geq 90\%$ Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 expressed in <i>E. coli</i> 25 µg 50 µg 100 µgSIRT4 (human recombinant)NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator SIR2L4, Sir2-like Protein 4, Sirtuin 4 M; 61.9 kDa Purity: $\geq 95\%$ Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 µg 50 µg 100 µgSIRT5 (human recombinant)NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Like Protein 5, Sirtuin 5 M; 60.6 kDa Purity: $\geq 90\%$ Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µg 50 µg 100 µgSIRT5 (human recombinant)NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Like Protein 5, Sirtuin 5M; 60.6 kDa Purity: $\geq 90\%$ Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µg 50 µg 100 µgSIRT6 (human recombinant)NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-Like Protein 5, Sirtuin 6 M; 43.7 kDa Purity: $\geq 95\%$ Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg 50 µg00 µgSIRT6 (human recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg00 µg	ivu µg	
Mitochondrial Nicotinamide Adenine Dinuclear-dependent Deacetylase, NAD-dependent Deacetylase 3, Silent Information Regulator 3, SIR2L3, SIR2-like Protein 3, Sirtuin 3M; 37 kDa Purity: $\geq 90\%$ Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-35 expressed in <i>E. coli</i> 25 µg 50 µg 100 µgSIRT4 (human recombinant)NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator SIR2L4, Sir2-like Protein 4, Sirtuin 4 M; 61.9 kDa Purity: $\geq 95\%$ Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 µg 50 µg 100 µgSIRT5 (human recombinant)NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Like Protein 5, Sirtuin 5M; 60.6 kDa Purity: $\geq 90\%$ Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µg 50 µg 100 µgSIRT5 (human recombinant)NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Like Protein 5, Sirtuin 5M; 60.6 kDa Purity: $\geq 90\%$ Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µg 50 µg 100 µgSIRT6 (human recombinant)NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-Like Protein 5, Sirtuin 6 M; 43.7 kDa Purity: $\geq 95\%$ Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg 50 µg00 µgSIRT6 (human recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg00 µg	CIDT2 (buyes are to complete cust)	1001110
Deacetylase 3, Silent Information Regulator 3, SIR2L3, SIR2-Like Protein 3, Sirtuin 3 M; 37 kDa Purity: \geq 90% Source: Active recombinant N-terminal His-tagged SIRT3 amino acids 101-39 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT4 (human recombinant) NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator SIR2L4, Sir2-Like Protein 4, Sirtuin 4 M; 61.9 kDa Purity: \geq 95% Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 µg 50 µg 100 µg SIRT5 (human recombinant) NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Li, Protein 5, Sirtuin 5 M; 60.6 kDa Purity: \geq 90% Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 µg 50 µg 100 µg SIRT5 (human recombinant) NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Li, Protein 5, Sirtuin 5 M; 60.6 kDa Purity: \geq 90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT6 (human recombinant] NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-Li, Protein 6, Sirtuin 6 M; 43.7 kDa Purity: \geq 95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg 50 µg	· · · · · · · · · · · · · · · · · · ·	
SIRT4 (human recombinant)1031NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information RegulatorSIR2L4, Sir2-like Protein 4, Sirtuin 4 M_i 61.9 kDa Purity: \geq 95%Source: Recombinant N-terminal GST-tagged SIRT4 purified from E. coli25 µg50 µg100 µgSIRT5 (human recombinant)NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-lin Protein 5, Sirtuin 5 M_i 60.6 kDa Purity: \geq 90%Source: Recombinant N-terminal GST-tagged SIRT5 expressed in E. coli25 µg50 µg100 µgSIRT6 (human recombinant)1031NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin Protein 5, Sirtuin 5 M_i : 60.6 kDa Purity: \geq 90%Source: Recombinant N-terminal GST-tagged SIRT5 expressed in E. coli25 µg50 µg100 µgSIRT6 (human recombinant)1031NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin Protein 6, Sirtuin 6 M_i : 43.7 kDa Purity: \geq 95%Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in E. coli25 µg25 µg50 µg	50 µg	
NAD-dependent ADP-ribosyltransferase Sirtuin 4, Silent Information Regulator SIR2L4, Sir2-like Protein 4, Sirtuin 4 M ₁ : 61.9 kDa Purity: ≥95% Source: Recombinant N-terminal GST-tagged SIRT4 purified from E. coli 25 µg 50 µg 100 µg SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-lin Protein 5, Sirtuin 5 M ₁ : 60.6 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in E. coli 25 µg 50 µg 100 µg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-lin Protein 5, Sirtuin 5 M ₁ : 60.6 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in E. coli 25 µg 100 µg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin Protein 6, Sirtuin 6 M ₂ : 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in E. coli	100 μg	
SIR2L4, Sir2-like Protein 4, Sirtuin 4 M _x : 61.9 kDa Purity : ≥95% Source: Recombinant N-terminal GST-tagged SIRT4 purified from <i>E. coli</i> 25 μg 50 μg 100 μg SIRT5 (hUman recombinant) 1031 <i>NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-lin</i> <i>Protein 5, Sirtuin 5</i> M _x : 60.6 kDa Purity : ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 μg 50 μg 100 μg SIRT6 (human recombinant) 1031 <i>NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin</i> <i>Protein 6, Sirtuin 6</i> M _x : 43.7 kDa Purity : ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 μg 50 μg	SIRT4 (human recombinant)	10317
25 μg 50 μg 100 μg SIRT5 (human recombinant) 101 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Li, Protein 5, Sirtuin 5 M ₄ : 60.6 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 μg 50 μg 100 μg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-Li, Protein 6, Sirtuin 6 M ₄ : 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 μg 50 μg	SIR2L4, Sir2-like Protein 4, Sirtuin 4 M.: 61.9 kDa Purity: ≥95%	
50 μg 100 μg SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-lin Protein 5, Sirtuin 5 M ₂ : 60.6 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 μg 50 μg 100 μg 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin Protein 6, Sirtuin 6 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin Protein 6, Sirtuin 6 1031 Surce: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 μg 25 μg 50 μg	Source: Recombinant N-terminal GST-tagged SIRT4 purifie	ed from <i>E. coli</i>
100 μg SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Lin Protein 5, Sirtuin 5 M ₂ : 60.6 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 μg 50 μg 100 μg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-Lin Protein 6, Sirtuin 6 M ₂ : 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 μg 50 μg 50 μg	25 µg	
SIRT5 (human recombinant) 1031 NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-Lin Protein 5, Sirtuin 5 M ₄ : 60.6 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-Lin Protein 6, Sirtuin 6 M ₄ : 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg		
NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-lin Protein 5, Sirtuin 5 M ₂ : 60.6 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin Protein 6, Sirtuin 6 M ₂ : 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg	του μg	
NAD-dependent Deacetylase 5, Silent Information Regulator 5, SIR2L5, SIR2-lin Protein 5, Sirtuin 5 M ₂ : 60.6 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin Protein 6, Sirtuin 6 M ₂ : 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg	SIRT5 (human recombinant)	10315
Protein 5, Sirtuin 5 Mr: 60.6 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 µg 50 µg 100 µg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin Protein 6, Sirtuin 6 Mr: 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg		
M _z : 60.6 kDa Purity: ≥90% Source: Recombinant N-terminal GST-tagged SIRT5 expressed in <i>E. coli</i> 25 μg 50 μg 100 μg SIRT6 (human recombinant) 1031 <i>NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin</i> <i>Protein 6, Sirtuin 6</i> M _z : 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 μg 50 μg		ر, SIKZLY, SIKZ-UK
Source: Recombinant N-terminal GST-tagged SIRT5 expressed in E. coli 25 μg 50 μg 100 μg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin Protein 6, Sirtuin 6 M ₂ : 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in E. coli 25 μg 50 μg	M_r: 60.6 kDa Purity: ≥90%	
50 μg 100 μg SIRT6 (h∪man recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-li, Protein 6, Sirtuin 6 M _r : 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 μg 50 μg		sed in E. coli
100 μg SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin Protein 6, Sirtuin 6 M _r : 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 μg 50 μg	25 µg	
SIRT6 (human recombinant) 1031 NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin Protein 6, Sirtuin 6 Mr: 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in E. coli 25 µg 50 µg	50 µg	
NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin Protein 6, Sirtuin 6 M _i : 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg	100 µg	
NAD-dependent Deacetylase 6, Silent Information Regulator 6, SIR2L6, SIR2-lin Protein 6, Sirtuin 6 M _i : 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg	SIDT((burnan racombinant)	10010
Protein 6, Sirtuin 6 M: 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg	/	
M _r : 43.7 kDa Purity: ≥95% Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 µg 50 µg		[*] 6, SIR2L6, SIR2-lik
Source: Active recombinant N-terminal His-tagged SIRT6 amino acids 1-35 expressed in <i>E. coli</i> 25 μg 50 μg	-	
expressed in <i>E. coli</i> 25 µg 50 µg		6 amino acids 1-35
25 µg 50 µg	expressed in <i>E. coli</i>	
50 µg		
	100 µg	

SIRT7 (human recombinant)

NAD-dependent deacetylase 7, Silent Information Regulator 7, SIR2L7, SIR2-like protein 7, Sirtuin 7 M_r: 49.3 kDa **Purity:** ≥85% Source: Recombinant N-terminal His-tagged SIRT7 expressed in *E. coli*

10316

25 µg 50 µg 100 µg

Λ

Alphabetical Index

A-922500	
Acadesine (AICAR)	
ACAT-1 Blocking Peptide	6
ACAT-1 Polyclonal Antibody	6
ACAT-2 Blocking Peptide	6
ACAT-2 Polyclonal Antibody	
Acetyl Podocarpic Acid Anhydride	
Aceryi i odocarpic Acia Aninyande	
Adamantane-pentyl-dNM (AMP-Deoxynojirimycin)	see Auponeciin
ADD 3878 (Ciglitazone)	
Adipocyte-FABP	See FABP4
Adipogenesis Assay Kit	
Adipolysis Assay Kit	27
Adiponectin (human) EIA Kit	27
Adiponectin (human) EIA Kit (HS)	27
Adiponectin (mouse) EIA Kit	
AdipoQ	See Adiponectin
Adipose PLA ₂ (AdPLA ₂ Polyclonal Antibody)	6
Adipose Triglyceride Lipase Blocking Peptide	6
Adipose Triglyceride Lipase Polyclonal Antibody	6
AdPLA ₂ Blocking Peptide	6
AdPLA ₂ Polyclonal Antibody	۵۲
ADSF	Soo Posistin
A-FABP	
AGF (ANGPTL6 (human) Monoclonal Antibody (Clone Kairc	
AICAR	
AICA Riboside (AICAR)	
Alli (Orlistat)	
ALBP	
AM3102	
6-Aminonicotinamide	
AMP-Deoxynojirimycin	
AMP-dNM (AMP-Deoxynojirimycin)	
6-AN (6-Aminonicotinamide)	
AN-7	
ANG-5	
Angiopoietin-5	
Angiopoietin-Like Protein	
Angiopoletin-Related Growth Factor (ANGPTL6 (human) Mo	
Angiopoletiti-Related Glowitt Factor (ANGFILD (Homan) Ma	nocional
	7
Angiopolicity Delated Protein 2	
Antibody (Clone Kairos-60)) Angiopoietin-Related Protein 3	7 See ANGPTL3
ANGPT5	See ANGPTL3
ANGPT5 ANGPTL3 (human) EIA Kit	See ANGPTL3 28
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37) .	See ANGPTL3 28 7
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37) . ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-154	See ANGPTL3 28 7 !1)7
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37) . ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-15/ ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-37/	See ANGPTL3
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37) . ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-154 ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-374 ANGPTL6 (human) EIA Kit	See ANGPTL3
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37) . ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-154 ANGPTL6 (human) EIA Kit ANGPTL6 (human) Monoclonal Antibody (Clone Kairos-60) .	See ANGPTL3 28 7 7 7 7 7
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37) . ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-154 ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-374 ANGPTL6 (human) EIA Kit ANGPTL6 (human) Monoclonal Antibody (Clone Kairos-60) . Anthropodeoxycholic Acid (Chenodeoxycholic Acid)	See ANGPTL3 28
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37) . ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-154 ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-374 ANGPTL6 (human) EIA Kit ANGPTL6 (human) Monoclonal Antibody (Clone Kairos-60) . Anthropodeoxycholic Acid (Chenodeoxycholic Acid) aP2	See ANGPTL3 28 28 29 11)
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37) . ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-154 ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-374 ANGPTL6 (human) EIA Kit ANGPTL6 (human) Monoclonal Antibody (Clone Kairos-60) . Anthropodeoxycholic Acid (Chenodeoxycholic Acid) aP2	See ANGPTL3 28 28 29 11)
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37) . ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-15/ ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-37/ ANGPTL6 (human) EIA Kit ANGPTL6 (human) Monoclonal Antibody (Clone Kairos-60) . Anthropodeoxycholic Acid (Chenodeoxycholic Acid) aP2 APD (Acetyl Podocarpic Acid Anhydride)	See ANGPTL3 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37) . ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-154 ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-374 ANGPTL6 (human) EIA Kit ANGPTL6 (human) Monoclonal Antibody (Clone Kairos-60) . Anthropodeoxycholic Acid (Chenodeoxycholic Acid) aP2 APD (Acetyl Podocarpic Acid Anhydride) Apelin-13	See ANGPTL3 28 28 29 11)
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37) . ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-154 ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-374 ANGPTL6 (human) EIA Kit ANGPTL6 (human) Monoclonal Antibody (Clone Kairos-60) . Anthropodeoxycholic Acid (Chenodeoxycholic Acid) aP2 APD (Acetyl Podocarpic Acid Anhydride) Apelin-13 Apelin-36	See ANGPTL3 28 28 29 11)
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37). ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-15/ ANGPTL6 (human) EIA Kit ANGPTL6 (human) EIA Kit ANGPTL6 (human) Monoclonal Antibody (Clone Kairos-60). Anthropodeoxycholic Acid (Chenodeoxycholic Acid) aP2 APD (Acetyl Podocarpic Acid Anhydride) Apelin-13 Apelin-36 Arachidonic Acid	See ANGPTL3 28
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37) . ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-15/2 ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-37/2 ANGPTL6 (human) EIA Kit ANGPTL6 (human) Monoclonal Antibody (Clone Kairos-60) . Anthropodeoxycholic Acid (Chenodeoxycholic Acid) APD (Acetyl Podocarpic Acid Anhydride) Apelin-13 Apelin-36 Arachidonic Acid	See ANGPTL3 28 28 28 28 28 28 28 28 28 28 28 28 28
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37) . ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-15/2 ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-37/2 ANGPTL6 (human) EIA Kit ANGPTL6 (human) Monoclonal Antibody (Clone Kairos-60) . Anthropodeoxycholic Acid (Chenodeoxycholic Acid) APD (Acetyl Podocarpic Acid Anhydride) APD (Acetyl Podocarpic Acid Anhydride) Apelin-13 Apelin-36 Arachidonic Acid ATGL (Adipose Triglyceride Lipase Polyclonal Antibody)	See ANGPTL3 28 28 28 7 11)
ANGPT5 ANGPTL3 (human) EIA Kit ANGPTL3 (human) Monoclonal Antibody (Clone Kairos-37) . ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-15/2 ANGPTL3 (murine) Monoclonal Antibody (Clone Kairos3-37/2 ANGPTL6 (human) EIA Kit ANGPTL6 (human) Monoclonal Antibody (Clone Kairos-60) . Anthropodeoxycholic Acid (Chenodeoxycholic Acid) APD (Acetyl Podocarpic Acid Anhydride) Apelin-13 Apelin-36 Arachidonic Acid	See ANGPTL3 28 28 28 29 29 20 20 20 20 20 20 20 20 20 20

В

BBR (Berberine)	16
Benzofibrate (Bezafibrate)	
Berberine	
Bezafibrate	16,23
Bezalip (Bezafibrate)	16
Bezatrol (Bezafibrate)	16
B-FABP (FABP7 (human recombinant))	49
BIBB 515	16
BM 15075 (Bezafibrate)	16
Brain-FABP (FABP7 (human recombinant))	49
BRL 49653 (Rosiglitazone)	24

C	
C75	16
(+)-trans-C75	16
(-)-trans-C75	16
Candesartan cilexetil	16
α-Carotene (Fucoxanthin)	20

CAY10410	16
CAY10415	
CAY10485	
CAY10486	
CAY10499	
CAY10506	
CAY10514	
CAY10566	
CAY10573	
CAY10587	
CAY10592	
CAY10599	
CAY10618	
CDCA (Chenodeoxycholic Acid)	18
Cerulenin	18
Cetaben	18
Chenodeoxycholic Acid	
Cholestane-6-oxo-3β,5α-diol (5α-hydroxy-6-keto Cholesterol)	
Cholesterol Acyltransferase 1 (ACAT-1 Polyclonal Antibody)	
Cholesterol Assay Kit	28
Cholesterol Cell-Based Detection Assay Kit	29
Cholesterol Uptake Cell-Based Assay Kit	29
3-C ₆ -NBD Cholesterol (3-hexanoyl-NBD Cholesterol)	18
3-C ₁₂ -NBD Cholesterol (3-dodecanoyl-NBD Cholesterol)	18
3-dodecanoyl-NBD Cholesterol	18
3-hexanoyl-NBD Cholesterol	18
25-hydroxy Cholesterol	
25-hydroxy Cholesterol-d ₄	
5α -hydroxy-6-keto Cholesterol	19
Cholesteryl Linoleate Hydroperoxides	19
ChREBP Cell-Based Translocation Assay Kit	29
ChREBP DBD (human recombinant)	
ChREBP DBD Western Ready Control	49
ChREBP DNA Binding Domain (ChREBP DBD (human recombinant))	49
ChREBP Transcription Factor Assay Kit	29
Ciglitazone	19.23
Clofibrate	
CoA (Coenzyme A Assay Kit)	
Coenzyme A Assay Kit	
Compactin (Mevastatin)	
Complement C1q TNF-related Protein 3 (CTRP3 (human) EIA Kit)	32
Corticosteroid 11β-Dehydrogenase Isozyme See 11β-Hydroxy	steroid
Cortisol EIA Kit	32
Cortisol Express EIA Kit	32
C1QTNF (CTRP5 (human) EIA Kit)	33
C1q tumor necrosis factor-a-related proteins (CTRP5 (human) EIA Kit).	33
CS 500 (Mevastatin)	22
CTRP3 (human) EIA Kit	
CTRP5 (human) EIA Kit	

D

DA11 FABP	See FABP5
DA11 FABP. 15-deoxy- <u>12,14</u> -prostaglandin J ₂	
15-deoxy- $\Delta_{12,14}^{12,14}$ -Prostaglandin J ₂ -biotin	24
15-deoxy- $\Delta^{12,14}$ -Prostaglandin J_2^2 -d	24
15-deoxy- $\Lambda^{12,14}$ -Prostaglandin L_{2}^{-2} -alycerol ester	24
15-deoxy-A ^{12,14} -Prostaglandin J ₂ Lipid Maps MS Standard	
15-deoxy- $\Delta^{12,14}$ -Prostaglandin J ₂ Quant-PAK	24
N-(5-adamantane-1-yl-methoxy-pentyl)-Deoxynojirimycin (AMP-	
Deoxynojirimycin)	13
Difateról (Bezafibrate) 9,10-dihydro-15-deoxy- $\Delta^{12,14}$ -PGJ ₂ (CAY10410)	16
9,10-dihydro-15-deoxy-Δ ^{12,14} -PGJ ₂ (CAY10410)	16
3,4-dihydroxy Hydrocinnamic acid (L-Aspartic acid dibenzyl este	r) amide
(CAY10485)	16
17-keto-4(Z),7(Z),10(Z),13(Z),15(E),19(Z)-Docosahexaenoic Acid	19
17-keto-7(Z),10(Z),13(Z),15(E),19(Z)-Docosapentaenoic Acid	19
3-dodecanoyl-NBD Cholesterol	18
DPP (IV) Inhibitor Screening Assay Kit	

E

EDL (Endothelial Lipase Polyclonal Antibody)	7
E-FABP	See FABP5
Eicosapentaenoic Acid	19
Eicosapentaenoic Acid ethyl ester	
EL (Endothelial Lipase Polyclonal Antibody)	7
Endothelial Lipase (human) Blocking Peptide	7
Endothelial Lipase Polyclonal Antibody	7
EPA (Eicosapentaenoic Acid)	19
EPA-EE (Eicosapentaenoic Acid ethyl ester)	
EPA ethyl ester (Eicosapentaenoic Acid ethyl ester)	
Epidermal-FABP	See FABP5

F FAAR See PPAR_δ FABP1 (human recombinant). FABP1 (rat recombinant)....... 49 49 FABP2 (human recombinant) 49 FABP2 (rat recombinant).. 49 FABP3 (human recombinant) .49 FABP4 (human recombinant). .49 FABP4 (human recombinant) FITC conjugated. .49 FABP4 (human recombinant) Western Ready Control.. .49 FABP4 (human) EIA Kit .. .33 FABP4 Inhibitor/Ligand Screening Assay Kit.. .33 FABP4 (mouse recombinant) .49 FABP4 (mouse recombinant) Western Ready Control. .49 FABP5 (human recombinant). .49 FABP5 (mouse recombinant). 49 FABP7 (human recombinant)..... Fat Mass and Obesity-Associated Gene 49 See FTO Fat Mass and Obesity-Associated Protein See FTO FATSOSee FTO FBP1 (Fructose 1,6-bisphosphatase (human recombinant)). ...49 F1,6BPase (Fructose 1,6-bisphosphatase (human recombinant)) 49 FDPase (Fructose 1,6-bisphosphatase (human recombinant)). ..49 Fenofibrate... .19,23 FFA (Free Fatty Acid Assay Kit)34 FFAR1 (GPR40 Polyclonal Antibody) ...8 FHBL2.. See ANGPTL3 FIZZ3.. ...See Resistin FK-866 ...20 Fluibil (Chenodeoxycholic Acid) Fluvastatin (sodium salt) ..18 .20 FMOC-Leu (FMOC-L-Leucine) FMOC-Leu (FMOC-L-Leucine) FMOC-L-Leucine. Free Fatty Acid Assay Kit Free Fatty Acid Receptor (GPR40 Polyclonal Antibody). .20 .20 .34 ...8 Fructose 1,6-bisphosphatase (human recombinant). .49 Fructose Fluorometric Assay Kit .. 34 FTO (intracellular; human) ÉIA Kit. 34 FTO (intracellular; mouse) EIA Kit. .34 FTO (human) Monoclonal Antibody (Clone FT 86-4). FTO (mouse) Monoclonal Antibody (Clone FT 62-6).. FTO (mouse) Monoclonal Antibody (Clone FT 342-1). Fucoxanthin. .20

G

G6PDH (Glucose-6-Phosphate Dehydrogenase Activity Assay Kit)	
GBP-28See Ad	
GH (Growth Hormone (rat) EIA Kit)	37
Ghrelin (human acylated) EIA Kit	
Ghrelin (human unacylated) EIA Kit	
Ghrelin (rat acylated) EIA Kit	35
Ghrelin (rat unacylated) EIA Kit	35
Glucokinase (human liver recombinant)	
Glucokinase (human pancreatic recombinant)	49
Glucose Colorimetric Assay Kit	
Glucose Fluorometric Assay Kit	
Glucose-6-Phosphate Dehydrogenase Activity Assay Kit	
Glucose Uptake Cell-Based Assay Kit	
Glycerol Cell-Based Assay Kit	36
Glycerol Colorimetric Assay Kit	
Glycerol Fluorometric Assay Kit	36
Glycogen Assay Kit	
Glycolysis Cell-Based Assay Kit	37
GPR40 Blocking Peptide	
GPR40 Polyclonal Antibody	
G Protein-Coupled Receptor 40 (GPR40 Polyclonal Antibody)	8
Growth Hormone (rat) EIA Kit	
GSK264220A	
(E)-Guggulsterone	20
(Z)-Guggulsterone	
GW 0742	20,23
GW 7647	21,23
GW 9508	21
GW 9578	21,23
GW 9662	21,23
GW 9662-d ₅	21
GW 590735	21,23

H

Harmine	21
β-HB (β-Hydroxybutyrate (Ketone Body) Assay Kit)	37

Heart-FABP (FABP3 (human recombinant))	49
Hekbilin (Chenodeoxycholic Acid)	
Hesperetin 9-cis-Hexadecenoic Acid (Palmitoleic Acid)	23
Hexadecylamino-p-amino Benzoic Acid (Cetaben)	18
3-hexanoyl-NBD Cholesterol	18
Hexokinase DSee Glucokin	
H-FABP (FABP3 (human recombinant))	49
Hormone Sensitive Lipase (human recombinant)	50
Hormone Sensitive Lipase Polyclonal Antibody	8
HRAS-Like Suppressor 3 (AdPLA ₂ Polyclonal Antibody)	6
HSD11ß (11ß-Hydroxysteroid Dehydrogenase)	50
11β-HSD	ase
HSL (Hormone Sensitive Lipase (human recombinant))	
HTS 01037	21
Human Hexokinase IV isoform	
3,4-dihydroxy Hydrocinnamic acid (L-Aspartic acid dibenzyl ester) amide	
(CAY10485)	16
3-Hydroxybutyric Acid (β-Hydroxybutyrate (Ketone Body) Assay Kit)	
β-Hydroxybutyrate (Ketone Body) Assay Kit	3/
25-hydroxy Cholesterol	18
25-hydroxy Cholesterol-d ₆	18
4-Hydroxycinnamic acid (L-phenylalanine methyl ester) amide	17
(CAY10486)	
5α-hydroxy-6-keto Cholesterol	
11β-Hydroxysteroid Dehydrogenase	
11β-Hydroxysteroid Dehydrogenase (Type 1) Blocking Peptide 11β-Hydroxysteroid Dehydrogenase (Type 1) Polyclonal Antibody	
11β-Hydroxysteroid Dehydrogenase (Type 2) Blocking Peptide	
11β-Hydroxysteroid Dehydrogenase (Type 2) Polyclonal Antibody	
Trp-riveroxysteroid Deriverogenese (Type 2) Tolyclondr Armbody	/

	See FABP2
Insulin (rat) EIA Kit	
Intestinal-FABP	See FABP2
5-lodotubercidin	
Itu (5-lodotubercidin)	
- (/	

IMV3002	

Κ	
K 22.175 (FK-866)	20
KB2115	
KDS-5104 (AM3102)	13
Kebilis (Chenodeoxycholic Acid)	18
Keratinocyte FABP	See FABP5
17-keto-4(Z),7(Z),10(Z),13(Z),15(E),19(Z)-Docosahexaenoic Acid	
17-keto-7(Z),10(Z),13(Z),15(E),19(Z)-Docosapentaenoic Acid	19

L-637,312 (Mevastatin)	
D-Lactate Assay Kit	
L-Lactate Assay Kit	
LDL Receptor Blocking Peptide	
LDL Receptor Polyclonal Antibody	
LDLR (LDL Receptor Polyclonal Antibody)	
LDL Uptake Cell-Based Assay Kit	
Leptin (human) EIA Kit	
Leptin (mouse/rat) EIA Kit	
Leptin Receptor (human) EIA Kit	
L-FABP	
LIPE	
Lipid Droplets Fluorescence Assay Kit	
(-)-Lisofylline ((R)-Lisofylline)	
(R)-Lisofylline	
Liver-FABP	See FABP1
Lovastatin	
Lovastatin Hydroxy Acid (sodium salt)	
(R)-LSF ((R)-Lisofylline)	

Medium-chain Fatty Acyl-CoA Dehydrogenase	
(MCAD Polyclonal Antibody)	9
Melanocortin-3 Receptor STEP Reporter Assay Kit (Luminescence)	
Melanocortin-4 Receptor Blocking Peptide	
Melanocortin-4 Receptor Polyclonal Antibody	9
Melanocortin-4 Receptor STEP Reporter Assay Kit (Luminescence)	
Methyl-8-hydroxy-8-(2-pentyl-oxyphenyl)-oct-5-ynoate (CAY10514)	17
Mevastatin	20.22
Mitochondrial Nicotinamide Adenine Dinuclear-dependent Deace	tylase
(SIRT3 (human recombinant))	
MK 733 (Simvastatin)	25
ML 236B (Mevastatin)	
Maractic Acid (Stegridanic Acid)	25

Ν

NAD ⁺ /NADH Cell-Based Assay Kit43	
NAD-dependent ADP-ribosyltranferase Sirtuin 4 (SIRT4	
(human recombinant))50	
NAD-dependent DeacetylaseSee SIRT	
Nampt Monoclonal Antibody (Clone OMNI 379)9	
Nampt/Visfatin (human) EIA Kit42	
Nampt/Visfatin (intracellular; human) EIA Kit	
Nampt/Visfatin (mouse/rat) EIA Kit	
Nampt/Visfatin (intracellular; mouse/rat) EIA Kit42	
NARC-1See PCSK9	
3-C ₄ -NBD Cholesterol (3-hexanoyl-NBD Cholesterol)	
3-C ₁₂ -NBD Cholesterol (3-dodecanoyl-NBD Cholesterol)	
2-NBDG	
NBD-Glucose (2-NBDG)	
Nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide,	
Nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide,	
Nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide, reduced (NAD ⁺ /NADH Cell-Based Assay Kit)	
Nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide, reduced (NAD ⁺ /NADH Cell-Based Assay Kit)	
Nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide, reduced (NAD ⁺ /NADH Cell-Based Assay Kit)	
Nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide, reduced (NAD ⁺ /NADH Cell-Based Assay Kit)	
Nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide, reduced (NAD ⁺ /NADH Cell-Based Assay Kit)	
Nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide, reduced (NAD ⁺ /NADH Cell-Based Assay Kit) 43 Nicotinamide Phosphoribosyltransferase See Nampt NMPRTase Inhibitor (CAY10618) 18 NPC 15199 (FMOC-L-Leucine) 20 NSC 21206 (6-Aminonicotinamide) 13 NSC 105823 (AICAR) 13	
Nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide, reduced (NAD*/NADH Cell-Based Assay Kit) Nicotinamide Phosphoribosyltransferase NMPRTase Inhibitor (CAY10618) NPC 15199 (FMOC-L-Leucine) NSC 21206 (6-Aminonicotinamide) NSC 113939 (5-lodotubercidin) NSC 21326 (AlCAR) NSC 213245 (Mevastatin) 22 NSC 334290 (FMOC-L-Leucine)	
Nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide, reduced (NAD ⁺ /NADH Cell-Based Assay Kit) Nicotinamide Phosphoribosyltransferase NPRTase Inhibitor (CAY10618) NPC 15199 (FMOC-L-Leucine) NSC 21206 (6-Aminonicotinamide) NSC 105823 (AICAR) NSC 113939 (5-lodotubercidin) 21 NSC 281245 (Mevastatin)	

0

OA (Oleyl Anilide)	23
N-Octadecyl-N'-propyl-sulfamide	
OEA (Oleoyl Ethanolamide)	
OL-64 (Vaspin (human) Monoclonal Antibody (Clone VP63))	
Oleic Àcid Anilide (Oleyl Anilide)	23
Oleic Acid-2,6-diisopropylanilide	
Oleic Acid Ethanolamide (Oleoyl Ethanolamide)	23
Oleoyl Ethanolamide	
Oleoyl Ethanolamide-d2	23
Oleoyl Ethanolamide-d4	23
Oleyl Anilide	17,23
Orexin 1 Receptor STEP Reporter Assay Kit (Luminescence)	43
Orexin 2 Receptor STEP Reporter Assay Kit (Luminescence)	43
Orlistat	23
6-Oxo-3,5-diol (5α-hydroxy-6-keto Cholesterol)	19
OX1R (Orexin 1 Receptor STEP Reporter Assay Kit (Luminescence)).	
OX2R (Orexin 2 Receptor STEP Reporter Assay Kit (Luminescence)).	43

Ρ

Palmitoleate (Palmitoleic Acid)	23
n-7 Palmitoleate (Palmitoleic Acid)	23
Palmitoleic Acid	23
Palmitoleic Acid-d ₁₄	23
Palmitoleic Acid ethyl ester	23
cis-Palmitoleic Acid (Palmitoleic Acid)	.23
PBEF1 (Nampt Monoclonal Antibody (Clone OMNI 379))	
Pck1 (PEPCK Polyclonal Antibody)	
PCSK9 Monoclonal Antibody (Clone 15A6)	
PCSK9 Polyclonal Antibody.	.10
PCSK9 (human) Blocking Peptide	10
PCSK9 (human) Polyclonal Antibody	
PCSK9 (mouse) Blocking Peptide	
PCSK9 (mouse) Polyclonal Antibody	
PEPCK Blocking Peptide	
PEPCK Polyclonal Antibody	.11
PEPCK-c (PEPCK Polyclonal Antibody)	.11
PGC-1 Blocking Peptide	.11
PGC-1 Polyclonal Antibody	.11

12 10 + 11 + 15 + 12 + 12 + 12 + 12 + 10 + 10 + 10 + 10
9,10-dihydro-15-deoxy-Δ ^{12,14} -PGJ ₂ (CAY10410)
Phosphoenolpyruvate carboxykinase (PEPCK Polyclonal Antibody)11
Pirinixic Acid (Wy 14643)
PLA ₂ ¢ (Adipose Triglyceride Lipase Polyclonal Antibody)
Plasma Retinol Binding Protein 4 (Serum Retinol Binding Protein 4
Polyclonal Antibody)12
PPAR α LBD (human recombinant)50
PPARα Ligand Binding Domain (PPARα LBD (human recombinant))50
PPARα Blocking Peptide11
PPARα Polyclonal Antibody11
PPARα Transcription Factor Assay Kit43
PPARα, δ, γ Complete Transcription Factor Assay Kit
PPARβSee PPARδ
PPARδ Blocking Peptide11
PPARδ (human recombinant)50
PPARô Polyclongl Antibody
PPARδ Transcription Factor Assay Kit
PPARδ Western Ready Control
PPARy Blocking Peptide
PPARy Coactivator 1 (PGC-1 Polyclonal Antibody)11
$PPAR_{\gamma}$ FL (human recombinant from E. coli)
PPARγ FL (human recombinant from Sf21 cells)
PPARy Full Length
PPARγ LBD (human recombinant)
PPARγ Ligand Binding Domain (PPARγ LBD (human recombinant))50
PPARy Ligand Pack 24
PPARy Ligand Pack
PPARγ Ligand Pack
PPARγ Ligand Pack
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit. 44 PPARγ Polyclonal Antibody 11 PPARγ Transcription Factor Assay Kit 44
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit. 44 PPARγ Polyclonal Antibody 11 PPARγ Transcription Factor Assay Kit 44 Pravestatin (sodium salt) 20.24
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit. 44 PPARγ Polyclonal Antibody. 11 PPARγ Transcription Factor Assay Kit. 44 Pravsstatin (sodium salt) 20,24 pRBP (Serum Retinol Binding Protein 4 Polyclonal Antibody) 12
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit. 44 PPARγ Polyclonal Antibody 11 PPARγ Transcription Factor Assay Kit. 44 Pravastatin (sodium salt) 20,24 PRBP (Serum Retinol Binding Protein 4 Polyclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody 12
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit. 44 PPARγ Polyclonal Antibody 11 PPARγ Transcription Factor Assay Kit. 44 Pravastatin (sodium salt) 20,24 PRBP (Serum Retinol Binding Protein 4 Polyclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody 9 (Clone OMNI 379)) 9
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit. 44 PPARγ Polyclonal Antibady 11 PPARγ Transcription Factor Assay Kit 44 Pravastatin (sodium salt) 20,24 pRBP (Serum Retinal Binding Protein 4 Polyclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody (Clone OMNI 379)) 9 Progranulin (human) ElA Kit 44
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit. 44 PPARγ Polyclonal Antibady 11 PPARγ Transcription Factor Assay Kit 44 Pravastatin (sodium salt) 20,24 pRBP (Serum Retinal Binding Protein 4 Polyclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody (Clone OMNI 379)) 9 Progranulin (human) ElA Kit 44
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit. 44 PPARγ Polyclonal Antibady 11 PPARγ Transcription Factor Assay Kit 44 Pravastatin (sodium salt) 20,24 pRBP (Serum Retinal Binding Protein 4 Polyclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody (Clone OMNI 379)) 9 Progranulin (human) ElA Kit 44
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit. 44 PPARγ Polyclonal Antibady 11 PPARγ Transcription Factor Assay Kit 44 Pravastatin (sodium salt) 20,24 pRBP (Serum Retinal Binding Protein 4 Polyclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody (Clone OMNI 379)) 9 Progranulin (human) ElA Kit 44
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit. 44 PPARγ Polyclonal Antibady 11 PPARγ Transcription Factor Assay Kit 44 Pravastatin (sodium salt) 20,24 pRBP (Serum Retinal Binding Protein 4 Polyclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody (Clone OMNI 379)) 9 Progranulin (human) ElA Kit 44
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit. 44 PPARγ Polyclonal Antibady 11 PPARγ Transcription Factor Assay Kit 44 Pravastatin (sodium salt) 20,24 pRBP (Serum Retinal Binding Protein 4 Polyclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody (Clone OMNI 379)) 9 Progranulin (human) ElA Kit 44
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit. 44 PPARγ Polyclonal Antibady 11 PPARγ Transcription Factor Assay Kit 44 Pravastatin (sodium salt) 20,24 pRBP (Serum Retinal Binding Protein 4 Polyclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody (Clone OMNI 379)) 9 Progranulin (human) ElA Kit 44
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit. 44 PPARγ Polyclonal Antibady 11 PPARγ Transcription Factor Assay Kit 44 Pravastatin (sodium salt) 20,24 pRBP (Serum Retinal Binding Protein 4 Polyclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody (Clone OMNI 379)) 9 Progranulin (human) ElA Kit 44
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit 44 PPARγ Transcription Factor Assay Kit 41 PPARγ Transcription Factor Assay Kit 44 Pravastatin (sodium salt) 20,24 PRBP (Serum Retinol Binding Protein 4 Polyclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody) 9 Progranulin (human) ElA Kit 44 Progranulin (nouse) ElA Kit 44 Proprotein Convertase Subtilisin Kexin 9 See PCSK9 15-deoxy-A ^{12,14} -Prostaglandin J ₂ -biotin 24 15-deoxy-A ^{12,14} -Prostaglandin J ₂ -2-glycerol ester 24 15-deoxy-A ^{12,14} -Prostaglandin J ₂ -2-glycerol ester 24 15-deoxy-A ^{12,14} -Prostaglandin J ₂ -2 24 15-deoxy-A ^{12,14} -Prostaglandin J ₂ Lipid Maps MS Standard 24 15-deoxy-A ^{12,14} -Prostaglandin J ₂ Lipid Maps MS Standard 24
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit 44 PPARγ Iranscription Factor Assay Kit 44 PPARγ Transcription Factor Assay Kit 44 Pravastatin (sodium salt) 20,24 PRBP (Serum Retinol Binding Protein 4 Polyclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody) 9 Progranulin (human) ElA Kit 44 Progranulin (nouse) ElA Kit 44 Propratolin Convertase Subtilisin Kexin 9 9 15-deoxy-A ^{12,14} -Prostaglandin J2 23,24 15-deoxy-A ^{12,14} -Prostaglandin J2-2-d4 24 15-deoxy-A ^{12,14} -Prostaglandin J2-2-2 24 15-deoxy-A ^{12,14} -Prostaglandin J2-2-2 24 15-deoxy-A ^{12,14} -Prostaglandin J2-2 24 15-deoxy-A ^{12,14} -Prostaglandin J2-2 24 15-deoxy-A ^{12,14} -Prostaglandin J2 24 15-deoxy-A ^{12,14} -Prostaglandin
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
PPARy Ligand Pack 24 PPARy Ligand Screening Assay Kit 44 PPARy Polyclonal Antibody 11 PPARy Transcription Factor Assay Kit 44 Pravastatin (sodium salt) 20,24 PRBP (Serum Retinol Binding Protein 4 Polyclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody) 9 Progranulin (human) EIA Kit 44 Proprotein Convertase Subtilisin Kexin 9 See PCSK9 15-deoxy-A ^{12,14} -Prostaglandin J ₂ -biotin 24 15-deoxy-A ^{12,14} -Prostaglandin J ₂ -2-glycerol ester 24 15-deoxy-A ^{12,14} -Prostaglandin J ₂ -2-glycerol ester 24 15-deoxy-A ^{12,14} -Prostaglandin J ₂ Lipid Maps MS Standard 24 PSN375963 24 PSN432408 24 PSN375963 24 Psoriasis-Associated FABP See FABP5 Pyruvate Assay Kit 45
PPARγ Ligand Pack 24 PPARγ Ligand Screening Assay Kit. 44 PPARγ Polyclonal Antibody. 11 PPARγ Transcription Factor Assay Kit. 44 Pravastatin (sodium salt). 20,24 pRBP (Serum Retinol Binding Protein 4 Polyclonal Antibody) 12 Pre-B Cell Colony Enhancing Factor 1 (Nampt Monoclonal Antibody (Clone OMNI 379)) 9 Progranulin (human) EIA Kit 44 Progranulin (nouse) EIA Kit 44 Proprotein Convertase Subtilisin Kexin 9 See PCSK9 15-deoxy-A ^{12,14} -Prostaglandin J ₂ -biotin 23,24 15-deoxy-A ^{12,14} -Prostaglandin J ₂ -biotin 24 15-deoxy-A ^{12,14} -Prostaglandin J ₂ -2-d ₄ 24 15-deoxy-A ^{12,14} -Prostaglandin J ₂ -2-glycerol ester 24 15-deoxy-A ^{12,14} -Prostaglandin J ₂ -2-glycerol ester 24 15-deoxy-A ^{12,14} -Prostaglandin J ₂ Quant-PAK. 24 PSN632408 24 PSN632408 24

Q

R	
RBP4See Reting	ol Binding Protein 4
Resistin (human) EIA Kit	
Resistin (rat) EIA Kit	45
Resulin TM (Troglitazone)	
Retinol Binding Protein 4 (human) Competitive EIA Kit	
Rimonabant	
RMI 14514 (TOFA)	25
Ro 48-8071	
Rosiglitazone	
Rosiglitazone-d ₅ Maleate	
Rosiglitazone (potassium salt)	

S

Serpin A12 (Vaspin (human) Monoclonal Antibody (Clone VP63))	
Serum Retinol Binding Protein 4 Blocking Peptide	12
Serum Retinol Binding Protein 4 (human recombinant)	
Serum Retinol Binding Protein 4 Polyclonal Antibody	12
Serum Retinol Binding Protein Western Ready Control	
Sesamin	
Silent Information Regulator	See SIRT
Simvastatin	20,25
Simvastatin (sodium salt)	20
Sir2 (SIRT7 Polyclonal Antibody)	12
SIR2L	
SIR2-like Protein	See SIRT
SIRT1 Direct Fluorescent Screening Assay Kit	47
SIRT1 FRET-Based Screening Assay Kit	48
SIRT1 (human recombinant)	50
SIRT2 Direct Fluorescent Screening Assay Kit	47
SIRT2 (human recombinant)	50

SIRT3 Direct Fluorescent Screening Assay Kit	
SIRT3 (human recombinant)	
SIRT4 (human recombinant)	
SIRT5 (human recombinant)	
SIRT6 Direct Fluorescent Screening Assay Kit	
SIRT6 (human recombinant)	
SIRT7 (human recombinant)	
SIRT7 Polyclonal Antibody	
Sirtuin	
SOAT1 (ACAT-1 Polyclonal Antibody)	6
SR 4388 (6-Aminonicotinamide)	
SR141716 (Rimonabant)	
sRBP4Se	e Serum Retinol Binding Protein 4
SREBF2 (SREBP-2 Polyclonal Antibody)	
SREBP-1 Transcription Factor Assay Kit	
SREBP-2 Blocking Peptide	
SREBP-2 Cell-Based Translocation Assay Kit.	
SREBP-2 Polyclonal Antibody	
SREBP-2 Transcription Factor Assay Kit	
Statin I (Mevastatin)	
Stearic Acid	
Stearic Acid ethyl ester	
Stearidonic Acid	
Stearidonic Acid ethyl ester	
Stearidonic Acid methyl ester	
Stearidonoyl Glycine	
Steatosis Colorimetric Assay Kit	
Sterol O-Acyltransferase	
Sterol Regulatory Element-binding Transcrip	tion Factor 2 (SREBP-2 Polyclonal
Antibody)	

т

T0070907	23,25
T0901317	25
TCV-116 (Candesartan cilexetil)	16
3-TDA (3-Thiatetradecanoic Acid)	25
5-(Tetradecyloxy)-2-furoic Acid (TOFA)	25
Tetrahydrolipstatin (Orlistat)	
9-Thiastearic Acid.	
3-Thiatetradecanoic Acid	25
Timnodonic Acid (Eicosapentaenoic Acid)	
TOFA	25
Triglyceride Colorimetric Assay Kit	48
Triglyceride Fluorometric Assay Kit	
Troglitazone	23,25

U-63287 (Ciglitazone)	19
U-18666A	
Ulmenide (Chenodeoxycholic Acid)	
Umbellatine (Berberine)	

V

Vaspin (human) ElA Kit Vaspin (human) Monoclonal Antibody (Clone VP63)...... Visceral Adipose Tissue-Derived Serpin A12 (Vaspin (human) ElA Kit)...... Visceral Adipose Tissue-Derived Serine Protease Inhibitor (Vaspin (human) Monoclonal Antibody (Clone VP63)).... Visfatin (Nampt Monoclonal Antibody (Clone OMNI 379)).... 48 .12 ...48 .12

W

Ζ

Williams-Beuren Syndrome Chromosome Region 14 (ChREBP DBD	
(human recombinant))	49
WS-bHLH (ChREBP DBD (human recombinant))	
Wy 14643	

Y YM-53601 .26 YM-201636.

For Laboratory Use Only. Not for human or veterinary diagnostic or therapeutic use. For current US pricing see caymanchem.com.

For current European or other overseas pricing, see caymaneurope.com or contact your local distributor.

Catalog Number Index

10024	
	5
	310
)
	2
	5
	5
	7
	76
	36
	»
	5
	4
	۰
	5
	5
	7
	37
	212
	39
	58
	5
	5
	9
)
	5
	7
	49
	20
	320
	317
)
	2
	7
	2
	712
13523	313
13524	1
	5
	5
10570	3
103/0	J
18570	11 24
18570).1
18570 18590)16
18570 18590 48001	
18570 18590 48001 60924 61700)
18570 18590 48001 60924 61700 70310)
18570 18590 48001 60924 61700 70310 70730)
18570 18590 48001 60924 61700 70310 70730 70730)
18570 18590 48001 60924 61700 70310 70730 70785 71000)
1857(1859(48001 60924 6170(7031(7073(7073(70785 7100(7173()
18570 18590 48001 60924 61700 70310 70730 70785 71000 71730 71740)
18570 18590 48001 60924 61700 70310 70730 70785 71000 71730 71740 71742)
1857(1859(48001 60924 6170(7031(7073(70785 7100(7173(7174(71742 71748	16 16 19 19 4
18570 18590 48001 60924 61700 70310 70730 71730 71730 71740 71742 71748 71750)
18570 18590 48001 60924 61700 70310 70730 71730 71730 71740 71742 71748 71750 71800)
18570 18590 48001 60924 61700 70310 70730 71730 71730 71740 71742 71742 71748 71750 71800 71810)
18570 18590 48001 60924 61700 70310 70785 71000 71730 71740 71742 71748 71750 71800 71810 90010	16 16 19 19 4
18570 18570 48001 60924 61700 70310 70730 71730 71740 71742 71748 71750 71800 71810 90010 90110)
18570 18590 48001 60924 61700 70310 70730 70785 71000 71740 71740 71742 71748 71750 71800 71810 90110 90110 90265)
18570 18570 48001 60924 61700 70310 70736 70735 71700 71742 71742 71742 71748 71742 71748 71748 71748 71748 71748 71748 71800 71810 90010 90010 90010 900265 90320)
18570 18570 48001 60924 61700 70310 70736 70736 71700 71742 71742 71742 71748 90010 90010 90010 90010 900265 90320 90500)
18570 18590 48001 48002 48007 70310 70730 70738 71000 71730 71740 71740 71742 71748 71755 71800 71810 90010 90010 90010 90010 900265 900322 90500 10002)
1857(1 1859) 48001 60924 61700 7073(2	D. 16 19 19 4. 23 D. 50 D. 25 D. 2326 S. 2123 D. 2324 D. 2324 D. 2324 D. 2324 D. 2325 D. 200 <
1857(1 1859) 48001 60924 61700 70310 70736 70736 71740 71742 71742 71742 71748 71748 71748 71748 71748 71748 90010 90010 90010 90010 90010 90010 90500 110002	D. 16 19 19 4. 23 50. 23,26 50. 23,26 50. 21,23 0. 24 0. 19,23 0. 23,24 2. 24 3. 23,24 2. 23,24 3. 16 0. 23,25 0. 23,25 0. 23,25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 26 0. 27 6<
1857(1 1857) 48001 60924 61700 70310 70730 70785 71000 71742 71742 71742 71742 71742 71742 71742 71740 90010 90010 90010 90010 90010 90010 90020 90050 10002 1	D. 16 19 19 4. 23 50 25 23,26 21,23 20. 23,26 21,23 24 21. 23,24 22. 24 23. 23,24 24. 24 25. 21,23 26. 23,24 27. 24 28. 16 29. 23,24 20. 23,25 20. 25 21. 24 30. 25 21. 24 32. 25 22. 24 33. 25 25. 25 27. 6 88. 6 30. 7 30. 11
1857(1) 1857(4) 1859(4) 48001 60924 61700 7031(70730 70730 71730 71740 71742 71000 71000 710177 7101077 7101077 710177 710777 71077 71077 71077 71077 71077 71	D. 16 19 17 4. 23 50 50 50 2326 51 2123 52 2123 53 2123 54 2324 55 2123 56 2123 57 2324 58 2123 59 2324 50 2325 50 20 50 25 50
1857(1857) 1857(1857) 48001 60922 48001 70733 70783 71730 71730 71730 71740 71742 71746 71745 71750 71810 90010 90010 90020 90320 90320 10002 10002 10002 101777 10177 10177 10177 10177 10177 10177	D. 16 19 19 4. 23 50 25 23,26 21,23 20. 23,26 21,23 24 21. 23,24 22. 24 23. 23,24 24. 24 25. 21,23 26. 23,24 27. 24 28. 16 29. 23,24 20. 23,25 20. 25 21. 24 30. 25 21. 24 32. 25 22. 24 33. 25 25. 25 27. 6 88. 6 30. 7 30. 11
18570 18570 4800 4800 4800 70736 70736 71730 71744 71742 71748 71747 71748 7080 711748 71748 709010 709010 709010 709010 70708 7000 710000 710000 710000 710000 710000 710000 710000 7100000 710000 7100000000 710000000000	D. 16 19 17 4. 23 50 25 50 2326 51 2123 52 2123 52 2123 52 2123 53 2123 53 2123 53 2123 53 2123 53 2324 53 2324 54 24 55 2123 55 20 55 25 56 25 57 6 88 6 90 71 10 11 10 11 10 11 100 9
18570 18570 4800 4400 4400 4400 46072 40733 70738 71740 71733 71742 71743 71744 71747 71810 709010 709020 709020 709020 700020 700020 700020 700020 700000 700000 700000 700000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 70000000 700000000	D. 16 19 19 4. 23 50. 25 23.26 21.23 50. 23.26 50. 23.26 50. 23.26 50. 23.24 20. 19.23 21. 23.24 22. 24 23. 23.25 20. 20 20. 23.25 20. 20 20. 25 20. 25 20. 25 20. 25 20. 25 21. 25 22. 24 23. 25 20. 25 21. 25 22. 25 23. 25 24. 6 25. 7 28 6 20. 11 10. 11 10. 11 20. 11
18570 18570 4800 4800 4800 4800 70316 70736 70736 71740 71730 71742 71007 710177 701777 701777 70177 70177 70177 70177 70177 70177 707	D. 16 19 19 4. 23 50 23 26 50. 23 26 50. 23 26 50. 23 26 50. 23 26 50. 23 24 50. 23 24 20. 23 24 21. 23 25 50. 23 25 50. 23 25 50. 26 50. 26 50. 26 50. 26 50. 25 50. 25 50. 25 51. 23 52. 25 52. 25 53. 25 54. 6 68. 6 60. 70 10. 11 10. 11 10. 11 10. 11 10. 11
18570 18570 4800 48002 48002 4800 70310 70733 70733 70733 70783 71700 71730 71740 71742 71742 71742 71748 71750 71740 709010 70010 7000 10000 10017 71017 7010 7007 30177	D. 16 19 19 4. 23 50 25 23,26 21,23 20. 23,24 21. 23,24 22. 24 23. 23,24 24. 24 25. 23,24 26. 23,25 27. 26 28. 16 29. 25 20. 25 21. 19 25. 25 26. 25 27. 6 28 6 30. 25 21. 25 22. 25 23. 25 24. 11 30. 11 30. 11 30. 11 30. 11 30. 11 30. 11 30. 11 30. 11 30. 11 30. 11 <
185701 4800 40924 4800 70310 70733 70785 71000 71740 71740 71740 71740 71740 71740 71740 71740 71740 71800 71810 90000 90010 900000 9000000	D. 16 19 17 4. 23 D. 50 D. 25 D. 25 D. 23 D. 24 D. 19 D. 21 D. 23 D. 23 D. 23 D. 23 D. 23 D. 23 D. 20 D. 20 D. 20 D. 20 D. 20 D. 19 D. 25 D. 25 D. 25 D. 25 D. 25 D. 11 D. 11 D. 11 D. 11
185701 4800 40924 4800 70310 70733 70783 717003 71740 71740 71740 71740 71740 71740 71740 71740 71740 71740 71740 71740 71810 90000 900000 900000 900000 9000000	D. 16 19 19 4. 23 50 23,26 51 21,23 52 23,26 53 24 54 19,23 55 23,24 56 23,24 57 23,24 50 23,25 50 23,25 50 23,25 50 23,25 50 23,25 50 23,25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 51 6 28 6 30 70 11 11 30 9 30 39
185702 18590 48001 48001 40924 48001 70730 70730 70730 70730 71730 71730 71730 71740 71740 71740 71740 71740 90010 90010 90010 90010 90010 90010 90010 90020 90050 100000 100000 100000 100000 100000 1000000 1000000 100000	D. 16 19 19 4. 23 50 25 20. 23,26 50. 21,23 20. 23,24 21. 24 22. 24 23. 23,24 24. 24 25. 23,24 26. 24 27. 26 20. 23,25 20. 25 20. 25 20. 25 20. 25 20. 25 21. 24 22. 24 32. 25 32. 25 32. 25 32. 25 33. 36 34. 4 35. 37 36. 7 37. 11 38 9 39 38 39 38
185707 18590 48001 60924 61700 70730 70738 71730 71730 71730 71742 71810 707 70100 707 70100 707 70100 707 70100 707 70100 707 70100 707 70010 707 70010 707 7007	D. 16 19 19 4. 23 50 25 50 2326 51 2326 52 2123 52 2123 52 2324 53 2123 53 2123 54 2324 55 2123 52 24 53 2324 54 24 55 2123 55 20 55 20 55 25 56 25 57 6 28 6 30 32 30 31 30 39 30 39 30 32
1857C1 48001 60924 61700 70730 70730 70730 71730 71730 71740 71740 71742 71742 71744 71742 71744 71740 9010 90110 90110 90110 90120 90520 90520 90520 90520 10002 10002 10002 10002 10002 10073 10177 10177 10177 30177 30177 30177 30177 30177	D. 16 19 19 4. 23 20. 23,26 50. 23,26 50. 23,26 50. 23,24 20. 23,24 21. 23,24 22. 24 23. 23,24 24. 24 25. 23,25 20. 23,25 20. 23,25 20. 23,25 20. 25 21. 26 22. 24 30. 25 21. 20 22. 24 30. 25 22. 24 30. 25 22. 24 30. 25 30. 25 30. 25 30. 25 30. 32 30. 32 30. 32 30. 32 30. 34 30. 37
185702 18590 48001 460924 48001 70310 70730 70730 70730 71730 71730 71730 71740 71740 71740 71740 71740 71740 71740 7017 71740 90010 90050 100000 100000 100000 100000 100000 100000 100000000	D. 16 19 19 4. 23 50 25 23,26 21,23 0. 23,26 2. 24 0. 23,24 2. 24 3. 23,24 2. 24 3. 23,24 2. 24 3. 16 0. 23,25 0. 23,25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 39 00
1857C1 48001 60922 61700 70730 70730 70730 71730 71730 71740 71740 71742 71741	D. 16 19 19 4. 23 50 25 50 21,23 50 21,23 50 23,26 51 24,24 52 23,24 53 24 54 23,24 55 21,23 52 23,24 53 23,25 55 25 55 23 56 23,25 57 6 80 7 50 25 71 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 11 11 12 11 13 11 14 12 15 32 16 32 17
1857C1 48001 60924 61700 70730 70730 71730 71730 71730 71740 71740 71744 71750 71744 71750 71744 71750 71744 71750 71744 71750 71744 71750 71740 90010 90010 90010 90100 900000 900000 90000 90000 90000 90000 90000 900000 900000 900000 900000 900000 900000 9000000	D. 16 19 19 4. 23 50. 25 23.26 50 23.26 21,23 0. 19,23 0. 23,24 0. 23,24 0. 23,24 0. 23,24 0. 23,25 0. 23,25 0. 23,25 0. 23,25 0. 23,25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 11 10 11 10 11 10 11 10 11 10 11 10 11 10 38
185702 18590 48001 460924 48001 70310 70730 70730 70730 70730 71730 71730 71730 71740 71744 71744 71744 71746 71740 71747 71746 71730 71740 70700 700010 70000 70000 70000 70000 70000 70000 70000 70000 70000 70000 70000 70000 70000 700000 700000 700000 700000 700000 700000 700000 7000000 70000000 700000000	D. 16 19 19 4. 23 25 23,26 26 21,23 27 24 28 16 29 23,24 20 23,24 21 23,24 22 24 23 24 20 23,24 21 23,24 22 24 23 24 24 24 25 23,25 20 25 21 23 22 23 23 25 24 25 25 25 26 26 27 6 28 6 20 11 20 11 20 11 20 32 20 32 20 32 20 32 32 32 32 32 39<
185702 48001 60922 61700 70730 70730 70730 71740 71740 71742 71747	D. 16 19 19 4. 23 50 25 23,26 21,23 0. 23,26 19,23 23,24 19,23 23,24 10. 23,25 11,23 23,24 12,23 24 20. 23,24 21. 24 22. 24 23. 23,24 24. 24 25. 20 26. 23,25 27. 6 28 6 30. 25 27. 6 28 6 30. 25 27. 6 28 6 30. 11 30. 11 30. 11 30. 11 30. 34 30. 32 30. 32 30. 34
1857C1 1859C 48001 60924 61700 70730 70738 71730 71730 71740 71742 71744 71747 71744 71747 71748 71740 70174 90010 90010 90010 90010 90026 90500 90020 90500 10000 500000 5000000	D. 16 19 19 4. 23 50. 25 23.26 21.23 0. 19,23 0. 23,24 0. 19,23 0. 23,24 2. 24 3. 16 0. 23,24 2. 24 3. 16 0. 23,25 0. 23,25 0. 23,25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 11 10 11 10 11 10 11 10 11 10 </th
185702 48001 460924 48001 460924 48001 70730 70738 71730 71730 71730 71730 71730 71740 71740 71740 71740 71740 71740 71740 71740 90010 90020 90000 100000 100000 1000000	D. 16 19 19 4. 23 50 25 23,26 21,23 0. 23,26 19,23 23,24 19,23 23,24 10. 23,25 11,23 23,24 12,23 24 20. 23,24 21. 24 22. 24 23. 23,24 24. 24 25. 20 26. 23,25 27. 6 28 6 30. 25 27. 6 28 6 30. 25 27. 6 28 6 30. 11 30. 11 30. 11 30. 11 30. 34 30. 32 30. 32 30. 34
185701 48001 60924 61700 70730 70730 70730 71730 71730 71740 71742 7174	D. 16 19 19 4. 23 20. 23 26 21.23 23 26 22. 24 21. 23 22. 24 23. 23 26 24. 19 23 25. 23 24 26. 23 25 27. 20 28. 16 29. 23 20. 23 21. 20 22. 24 33. 25 20. 25 21. 25 22. 25 23. 25 25. 25 20. 25 21. 25 22. 24 32. 25 32. 25 32. 25 33. 32 34. 39 35. 32 36. 32 37. 38 30. 32

579060 579070	
	34
	45
580170	
580190	
580120	33
580200	32
589501	
589601	
600180	39
600190	39
600240	
600250	
600440	
600450	37
600470	36
600480	
700190	
700210	33
700280	47
700290	47
700300	
700310	
700440	32
700470	45
700480	
700510	
700520	
700690	
700710	35
700720	
700730	
9000327	
9000346	
9000347	19
9000431	
9000484	
9000497	
9000552	23
9000783	16
9000784	16
9001068	
10004111	
10004303	
10004549	
10004888	20
10004943	11
10005000	25
10005090	
10005091	
10005191	
10005200	
10005263	
	25
	25
10005270	25 16
10005270	25 16 23
10005270 10005368	25 16 23 23
10005270	25 16 23 23 18
10005270	25 16 23 23 18 .8
10005270	25 16 23 23 18 .8 21
10005270	25 16 23 23 18 .8 21
10005270	25 16 23 23 18 .8 21 13
10005270	25 16 23 23 18 .8 21 13 11
10005270	25 16 23 23 18 .8 21 13 11 35
10005270	25 16 23 23 18 .8 21 13 13 11 35 35
10005270	25 16 23 23 18 .8 21 13 11 35 35 .9
10005270	25 16 23 23 18 .8 21 13 11 35 35 .9 .9
10005270. 10005308. 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,	25 16 23 23 18 .8 21 13 11 35 35 .9 .9 .8
10005270	25 16 23 23 18 .8 21 13 11 35 35 .9 .8 .8 .0 .9
10005270	25 16 23 23 18 .8 21 13 11 35 35 .9 .8 .8 .0 .9
10005270	25 16 23 18 .8 21 13 13 5 35 .9 .9 .8 .6 24
10005270	25 16 23 18 .8 21 13 5 .9 .9 .8 .6 24 16
10005270. 10005328. 19.7 10005328. 19.7 10005426. 10005729. 10005627 10006084. 10006212. 100062247. 10006306. 10006307. 10006305. 10006335. 10006335. 10006337. 10006437. 10006437. 10006437. 10006437. 10006437. 10006437. 100064452. 20.7 10006427. 10006427. 10006427. 10006427. 10006427. 10006427. 10006425. 20.7 10006425. 10006425. 10006455. 100006455. 100006455. 1000	25 16 23 18 .8 21 13 11 35 .9 .8 .6 24 16
10005270	25 16 23 23 18 .21 13 11 35 .9 .8 .6 24 16 17
10005270	25 16 23 23 18 .21 13 5 .9 .8 .6 24 17 17 23
10005270	25 16 23 23 18 .21 13 5 .9 .8 .6 24 17 17 23
10005270	25 23 23 18 21 13 23 11 35 35 .9 .8 .24 17 17 23 22
10005270. 10005368. 19. 10005368. 19. 10005426. 1000547. 10005729. 10006084. 10006212. 10006247. 10006306. 10006307. 10006307. 10006307. 10006305. 10006337. 10006335. 10006337. 10006437. 10006437. 10006447. 10006449. 10006449. 10006442. 10006442. 10006442. 10006452. 10006452. 10006452. 10006482. 16, 10006529. 17. 10006782. 17. 10006782. 17. 10006798. 20.2 10006782. 17. 10006782. 17. 10006798. 20.2 10006782. 17. 10006782. 17. 10006798. 20.2 10006782. 17. 10006798. 20.2 10006782. 10006782. 10006782. 17. 10006798. 20.2 10006782. 10006782. 10006782. 10006782. 10006782. 10006782. 10006782. 10006782. 10006782. 10006782. 10006782. 10006782. 10006782. 10006782. 10006782. 1000	25 23 23 18 21 13 53 5 .9 .8 .24 16 7 17 22 23
10005270. 10005368. 19/. 10005426. 10005426. 10005729. 10005729. 10006212. 10006247. 10006306. 10006307. 10006355. 10006355. 10006415. 20/. 10006427. 10006426. 10006356. 10006427. 10006427. 10006427. 10006425. 10006427. 10006426. 16. 10006452. 17. 10006452. 17. 10006798. 20. 10006798. 20.	25 16 23 18 .21 13 11 35 .9 .8 .6 24 17 17 23 24
10005270. 10005328. 19.7 10005328. 19.7 10005426. 72 10005647. 10005729. 10006084. 72 10006212. 10006306. 10006306. 10006335. 10006335. 10006335. 10006356. 10006419. 10006419. 10006427. 10006452. 10006452. 16,0006452. 16,0006452. 16,0006452. 17,7 10006782. 17,7 10006798. 20,20 10006855.	25 16 23 18 .21 13 55 .9 .8 .24 17 23 24 44
10005270. 10005368. 19. 10005368. 19. 10005426. 10005729. 10005647. 10006212. 10006247. 10006247. 10006306. 10006305. 10006307. 10006305. 10006337. 10006335. 10006437. 10006437. 10006447. 10006447. 10006447. 10006447. 10006442. 16. 10006422. 16. 10006422. 16. 10006422. 16. 10006529. 17. 10006782. 17. 10006798. 20. 10006855. 10006855. 10006855. 10006855. 10006855. 10006856.	25 23 23 18 21 13 23 11 35 24 16 17 22 23 44 25
10005270. 10005368. 19.// 10005426. 10005426. 10005729. 1000684. 10006212. 10006247. 10006247. 10006306. 10006306. 10006307. 100063355. 10006335. 10006335. 10006371. 10006415. 20./ 10006427. 10006452. 10006428. 16, 10006452. 17./ 10006782. 17./ 10006782. 17./ 10006782. 17./ 10006855. 0006855. 10006856. 10006856. 10006856. 10006856. 10006856. 10006866.	25 16 23 18 .21 13 55 .9 .8 .64 16 17 23 24 24 22 24 22 23 44 25 27
10005270. 10005328. 19.7. 10005328. 19.7. 10005426. 72. 100055729. 1000684. 72. 72. 10006247. 10006306. 72. 72. 10006306. 10006335. 10006356. 70. 72. 10006419. 10006415. 20.7. 70.	25 16 23 23 18 21 13 55 .9 .6 24 17 22 23 44 25 27 29
10005270. 10005368. 19.// 10005426. 10005426. 10005729. 1000684. 10006212. 10006247. 10006247. 10006306. 10006306. 10006307. 100063355. 10006335. 10006335. 10006371. 10006415. 20./ 10006427. 10006452. 10006428. 16, 10006452. 17./ 10006782. 17./ 10006782. 17./ 10006782. 17./ 10006855. 0006855. 10006856. 10006856. 10006856. 10006856. 10006856. 10006866.	25 16 23 23 18 21 13 55 .9 .6 24 17 22 23 44 25 27 29
10005270. 10005328. 19.7. 10005328. 19.7. 10005426. 72. 100055729. 1000684. 72. 72. 10006247. 10006306. 72. 72. 10006306. 10006335. 10006356. 70. 72. 10006419. 10006415. 20.7. 70.	25 123 23 18 21 13 23 23 18 21 23 23 23 24 25 27 24 22 24 25 27 24 22 24 22 23 24 24 25 27 24 24 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24
10005270	25 123 23 18 21 13 25 23 18 21 23 23 24 24 25 24 24 25 24 45 27 24 43
10005270. 10005368. 19.7. 10005368. 19.7. 1000547. 20.000 10005647. 20.000 10006247. 20.000 10006306. 20.000 10006306. 20.000 10006306. 20.000 10006307. 20.000 10006306. 20.000 10006307. 20.000 10006307. 20.000 10006409. 20.000 10006415. 20.000 10006452. 16. 10006452. 16. 10006452. 17. 10006782. 17. 10006782. 17. 10006798. 20.000 10006850. 20.000 10006908. 20.000 10006909. 20.000 10006915. 20.000 10007171. 20.000	25 16 23 18 21 35 23 11 35 29 24 22 24 25 29 44 31 22 24 45 29 44 31 22 24 45 29 44 31 20 20 20 20 20 20 20 20 20 20 20 20 20
10005270. 10005328. 19.7 10005328. 19.7 1000547 1000547. 10005729. 10006084. 10006212. 10006212. 10006306. 10006306. 10006307. 10006305. 10006335. 10006335. 10006337. 10006419. 20.7 10006427. 10006427. 10006427. 10006427. 10006452. 16. 17.7 10006452. 17.7 10006798. 20.7 10006855. 10006855. 10006855. 10006856. 10006909. 10006909. 10006915. 1000717. 10007185. 10007185. 10007185.	25 16 23 18 21 35 23 11 35 29 24 17 22 24 45 27 24 43 10
10005270. 10005368. 19./ 10005368. 19./ 1000547 1000547. 10005729. 1000684. 10006212. 10006247. 10006306. 10006306. 10006307. 10006307. 10006311. 10006437. 10006437. 10006415. 20./ 10006427. 10006427. 10006445. 10006445. 10006427. 100064452. 16. 100064282. 16. 10006555. 10006455. 10006798. 20./ 10006855. 10006855. 10006855. 100066908. 10006908. 10006908. 10006914. 10006915. 10007185. 10007186. 10007186. 10007186.	25 16 23 18 213 115 35 9 .8 64 17 23 24 42 27 24 43 10 10
10005270. 10005368. 10005426. 10005547. 10005547. 10005647. 10005729. 10006212. 10006366. 10006366. 10006371. 10006409. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006782. 10006798. 10006856. 10006908. 10006915. 10007171. 10007185. 10007186. 10007205.	25 16 23 18 213 115 35 9 8 6 4 17 23 24 42 27 24 43 10 10
10005270. 10005328. 19.7 10005328. 19.7 10005426. 10005647. 10005647. 10006084. 10006084. 10006084. 10006036. 10006306. 10006306. 10006307. 10006335. 10006335. 10006335. 100063371. 10006419. 10006419. 10006412. 10006427. 10006427. 10006452. 16.0 16.0 17.7 10006782. 17.7 10006782. 17.7 10006782. 17.7 10006855. 10006855. 10006855. 10006855. 10006855. 10006855. 10006909. 10006914. 10006915. 10007171. 10007185. 10007185. 10007185. 10007205. 10007206. 10007206. 10007206. 10007206. 10007206. 10007206. 10007206. 10007206. 10007206. 10007206. 10007206. 10007205. 10007206. 10007206. 10007206. 10007206. 10007206. 10007206. 10007206. 10007206. 10007206. 10007206. 10007206. 10007206. 10007206. 100007206. 10007206. <t< td=""><td>25 16 23 18 .21 13 55 .9 .6 24 17 22 23 24 43 10 .8 .10 .8 .10 .8 .10 .8 .21 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1</td></t<>	25 16 23 18 .21 13 55 .9 .6 24 17 22 23 24 43 10 .8 .10 .8 .10 .8 .10 .8 .21 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
10005270. 10005368. 19./ 10005368. 19./ 1000547 1000547. 10005729. 10006247 10006247. 10006247. 10006306. 10006306. 10006307. 10006305. 10006415. 20./ 10006415. 20./ 10006427. 10006425. 10006427. 10006427. 10006427. 10006427. 10006425. 10006427. 10006425. 10006425. 10006425. 10006452. 16. 10006529. 17./ 10006529. 17./ 10006455. 20./ 10006455. 20./ 10006529. 17./ 10006798. 20./ 10006855. 20./ 10006855. 20./ 10006798. 20./ 10006798. 20./ 10006798. 20./ 10006798. 20./ 10006798. 20./ 10006798. 20./ 10006798. 20./ 10006798. 20./ 10006798. 20./ 10006798. 20./ 10006798. 20./ 10006798. 20./ 10006798. 20./ 10006798. 20./ <	25 16 23 18 .21 13 55 .9 .6 24 17 22 23 24 43 10 .8 24 10 .8 24 10 .8 24 10 .8 22 24 43 10 .8 24 43 10 .8 24 43 10 .8 24 24 25 26 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27
10005270	25 16 23 18 21 13 55 .9 8.64 17 22 23 44 57 24 43 10 8.84 25
10005270	25 16 23 18 21 13 55 .9 8.64 17 22 23 44 57 24 43 10 8.84 25
10005270. 10005328. 1000547. 1000547. 10005647. 10005647. 10006084. 10006306. 10006306. 10006305. 10006335. 10006409. 10006415. 10006427. 10006427. 10006427. 10006452. 10006452. 10006452. 10006452. 10006452. 10006856. 10006855. 10006855. 10006909. 10006914. 10007185. 1000725. 1000726. 1000726. 1000727. 10007417.	25 16 22 21 8 21 13 55 9 8 6 4 17 22 23 4 4 22 24 4 3 10 8 8 10 8 8 4 25 9 4 3 10 8 10 8 10 8 10 8 10 8 10 8 10 8 10
10005270	25 16 22 21 8 21 13 55 9 8 6 4 17 22 23 4 4 22 24 4 3 10 8 8 10 8 8 4 25 9 8 6 4 10 7 22 24 4 3 10 10 8 10 10 8 5 9 8 6 4 10 7 10 10 10 10 10 10 10 10 10 10 10 10 10
10005270	25 25 22 23 23 23 23 23 23 23 23 23
10005270. 10005368. 10005426. 1000547. 10005647. 10005647. 1000684. 10006306. 10006306. 10006335. 10006356. 10006356. 10006356. 10006415. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006788. 10006855. 10006808. 10006908. 10006915. 10007185. 10007185. 10007205. 10007205. 10007432. 10007433.	225 25 23 23 23 24 24 24 25 27 29 29 24 24 24 25 27 27 29 24 24 24 25 27 27 29 24 24 24 25 27 27 29 24 24 24 25 27 27 29 24 24 25 27 27 29 24 24 25 27 27 29 24 24 25 27 27 29 24 24 25 27 26 24 24 24 25 27 26 24 24 24 25 27 26 24 24 24 25 27 26 24 24 24 25 27 26 24 24 24 25 26 24 24 24 25 26 24 24 24 25 26 24 24 24 25 26 24 24 24 24 25 26 24 24 24 24 24 24 24 24 24 24 24 24 24
10005270. 10005368. 19.7 10005368. 19.7 1000547 10005647. 10005729. 10006084. 10006212. 10006212. 10006306. 10006306. 10006307. 10006305. 10006307. 10006335. 10006335. 10006415. 20.7 10006427. 10006427. 10006425. 16.7 100064282. 16.7 10006452. 10006452. 17.7 10006452. 10006659. 17.7 10006855. 10006855. 10006856. 10006908. 10006914. 10006915. 10007171. 10007185. 10007206. 10007206. 10007433. 10007451. 10007451. 10007451. 10007451. 10007451.	225 16 23 23 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29
10005270. 10005368. 10005426. 1000547. 10005647. 10005647. 1000684. 10006306. 10006306. 10006335. 10006356. 10006356. 10006415. 10006427. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 10006452. 1000678. 10006798. 10006908. 10006908. 10006915. 10007185. 10007185. 10007205. 10007432. 10007433.	225 16 23 23 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29

10007619. 10007612. 10007612. 10007612. 1000763. 10007643. 10007643. 10007643. 10007683. 10007683. 10007683. 10007683. 10007815. 10007815. 1000783. 1000783. 10007843. 10007843. 10007843. 10007843. 10007843. 10007843. 10007844. 10008204. 10008492. 10008492. 10008413. 10008844. 10008845. 10008907. 10008907. 10008915. 10009078. 10009745. 10009754. 10009754. 10009547. 10009548. 10009547. 10009548. 10009547. 10009548. 10009547. 10009548. 10	
10007610 10007612 10007620 10007640 10007645 10007681 10007685 10007686 100076875 10007875 10007875 10007875 10007875 10007875 10007875 10007875 10007875 10007875 10008196 10008878 10008878 10008873 10008873 10008873 10008874 10008875 10008878 10008878 10008878 1000907 10008878 1000907 1000907 1000907 1000907 1000907 1000907 1000907 1000907 1000907 1000907 1000907 1000907 1000907 10000961 10000962 <td>10007609</td>	10007609
10007612. 10007614. 10007620. 10007640. 10007663. 10007663. 10007682. 10007683. 10007683. 10007683. 10007815. 10007813. 10007813. 10007823. 10007843. 10007843. 10007843. 10007843. 10008593. 10008593. 10008594. 10008844. 10008844. 10008844. 10008844. 10008844. 10008844. 10008845. 10009853. 10009854. 10009965. 10009965. 1000979. 1000974. 10009754. 10009547. 10009581. 10009582. 10009583. 10009584. 10009585. 10009586. 10009587. 10009587. 1	
10007619 10007640 10007643 10007643 10007681 10007682 10007683 10007684 10007685 10007818 10007813 10007814 1000783 1000783 10007844 1000783 1000783 10007844 10008196 10008593 100086413 10008845 10008846 10008878 10008884 10008953 1000977 10009852 10009853 10009915 10009239 10009544 10009551 10009551 10009568 10009568 10009573 10009568 10009568 10009568 10009568 10009573 10009568 10009574 10009575 10	
10007640 10007643 1000763 10007681 10007682 10007818 10007818 10007819 10007813 1000783 10007842 1000783 10007842 10007843 10007844 10008196 10008204 10008422 10008442 10008442 10008643 10008844 10008845 10008846 10008878 10008878 10008878 10008879 10008878 10008878 10008878 10008907 10008878 1000979 10009855 10009079 10009741 10009754 10009754 10009547 10009548 10009548 10009548 10009548 10009548 10	10007614
10007640. 10007645. 10007681. 10007685. 10007815. 10007813. 10007813. 10007823. 10007823. 10007823. 10007823. 10007823. 10007823. 10007823. 10007823. 10008204. 10008224. 10008824. 10008824. 10008811. 10008813. 1000884. 10008852. 10008852. 10009853. 10009853. 10009979. 10009924. 10009542. 10009543. 10009544. 10009547. 10009548. 10009547. 10009548. 10009547. 10009548. 10009547. 10009548. 10009548. 10009548. 10009547. 10009548. 10009548.	
10007645 10007681 10007682 10007815 10007815 10007815 1000783 1000783 1000783 1000783 1000783 1000783 1000783 1000783 1000783 10007844 10008442 10008593 10008594 10008846 10008846 10008846 10008878 10008878 10008873 10008874 10008875 10008907 10008907 10008952 10009853 10009915 10009264 10009548 10009548 10009548 10009548 10009548 10009548 10009548 10009548 10009548 10009548 10009548 10009548 1000954	
10007665 10007682 10007682 10007685 10007818 10007818 10007818 10007835 10007845 10007875 10007875 10007873 10007842 10008196 10008492 10008593 10008643 10008844 10008811 10008884 10008878 10008878 10008878 10009852 10009952 10009979 10009071 10009071 10009078 10009079 10009071 10009072 10009073 10009074 10009544 10009548 10009548 10009581 10009582 10009584 10009585 10009584 10009585 10009586 10009754 <t< td=""><td></td></t<>	
10007672 10007681 10007685 10007815 10007819 10007819 10007823 10007875 10007938 10007938 10007941 10008204 10008459 10008593 10008644 10008845 10008846 10008846 10008878 10008878 10008873 10008874 10008875 10008875 10008876 10008877 10008878 10009879 10009871 10009855 1000978 10009784 10009524 10009548 10009548 10009548 10009548 10009548 10009548 10009548 10009548 10009548 10009548 10009548 10009548 <td< td=""><td></td></td<>	
10007681 10007682 10007815 10007815 10007813 10007813 10007823 10007823 10007841 10007823 10007823 10007841 10008204 10008422 10008423 10008593 10008843 10008844 10008878 10008878 10008878 10008878 10008878 10008875 10009875 10009875 1000977 10009878 1000979 1000979 1000974 1000974 10009753 10009548 10009548 10009548 10009548 10009549 10009541 10009542 10009543 10009544 10009545 10009546 10009547 100	
10007682 10007685 10007815 10007815 10007813 10007825 10007938 10007938 10007941 10008196 10008204 10008593 10008593 10008811 10008844 10008844 10008875 10008876 10008877 10008878 10009853 10009975 10009978 10009985 10009985 10009985 10009985 10009985 10009985 10009985 10009985 10009985 10009544 10009547 10009548 10009548 10009548 10009548 10009548 10009548 10009548 10009548 10009548 10009548 10009548 <t< td=""><td></td></t<>	
10007685. 10007815. 10007818. 10007813. 10007823. 10007823. 10007823. 10007815. 10007823. 10007823. 10008204. 10008293. 10008492. 10008492. 10008843. 10008843. 10008878. 10008878. 10008878. 10008878. 10008878. 10008878. 10009953. 10009077. 10009079. 10009071. 10009072. 10009073. 10009074. 10009246. 10009547. 10009548. 10009548. 10009548. 10009548. 10009548. 10009548. 10009548. 10009548. 10009548. 10009548. 10009548. 10009548. 10009548. <td< td=""><td></td></td<>	
10007686. 10007818. 10007819. 10007825. 10007875. 10007875. 10007875. 10007875. 10008196. 10008196. 10008492. 10008593. 10008594. 10008811. 10008884. 10008878. 10008878. 10008884. 10009852. 100099085. 100099085. 10009915. 10009924. 10009524. 10009547. 10009548. 10009547. 10009548. 10009547. 10009548. 10009547. 10009548. 10009549. 10009549. 10009541. 10009542. 10009543. 10009544. 10009545. 10009547. 10009548. 10009549. 10009541. 10009542. <	
10007815. 10007819. 10007823. 10007823. 10007938. 10007941. 10008204. 10008593. 10008593. 10008844. 10008844. 10008845. 10008846. 10008847. 10008847. 10008847. 10008847. 10008867. 10008878. 10008878. 10008907. 10008907. 10008972. 10009808. 10009017. 17 10009017. 10009017. 10009018. 10009239. 10009244. 10009547. 10009548. 10009547. 10009581. 10009582. 10009583. 10009584. 10009585. 10009581. 10009582. 10009583. 10009584. 10009754. 10009754. 10009754. <t< td=""><td></td></t<>	
10007818. 10007823. 10007875. 10007941. 10008196. 10008492. 10008492. 10008493. 10008493. 10008811. 10008813. 10008846. 10008878. 10008878. 10008952. 10009977. 10009853. 10009854. 10009855. 10009085. 10009085. 10009239. 10009246. 10009547. 10009548. 10009547. 10009548. 10009548. 10009547. 10009548. 10009549. 10009541. 10009542. 10009543. 10009544. 10009547. 10009548. 10009549. 10009541. 10009542. 10009543. 1001033. 1001034. 1001035. 10	
10007819. 10007823. 10007941. 10008196. 10008204. 10008593. 10008593. 10008841. 10008811. 10008813. 1000884. 1000884. 10008852. 10008953. 10008954. 10008955. 10008955. 10009955. 10009085. 10009264. 10009254. 10009547. 10009548. 10009547. 10009548. 10009551. 10009548. 10009551. 10009551. 10009547. 10009551. 10009551. 10009547. 10009554. 10009554. 10009554. 10009754. 10009754. 10009754. 10010241. 1001032. 1001033. 1001034. 1001034. 10010	
10007823. 1000783. 10007941. 10008204. 10008204. 10008591. 10008593. 10008594. 10008846. 10008857. 10008846. 10008857. 10008846. 10008857. 10008857. 10008952. 10008953. 10009077. 10009079. 10009079. 10009079. 10009079. 10009079. 10009079. 10009079. 10009079. 10009079. 10009079. 10009239. 10009540. 10009541. 10009551. 10009542. 10009551. 10009551. 10009551. 10009551. 10009551. 10009562. 10009574. 10009574. 10009575. 1000957. 1001032. 10	
1000781 10007941 10008196 10008492 10008593 10008611 10008846 110008878 100088752 10008953 10008854 10008878 10008952 1000997 1000997 10009953 10009917 17 10009929 10009266 10009226 10009521 10009524 10009547 10009548 10009548 10009548 10009551 10009548 10009551 10009581 10009581 10009581 10009753 10009754 10009754 10009754 1001032 10010337 10010343 10010344 201001337 10010343 10010344 2010010344 200	
10007938. 10007941. 10008196. 10008593. 10008594. 10008811. 10008813. 10008844. 100088553. 10008553. 10009017. 10009017. 10009017. 100090152. 100090153. 100090155. 100090155. 100090155. 10009246. 10009548. 10009554. 10009551. 10009551. 10009551. 10009551. 10009554. 10009554. 10009551. 10009551. 10009552. 10009568. 10009568. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10001032. 1001033. 1001032. 1001033. 1001034. <	
10007941. 10008204. 10008204. 10008594. 10008594. 10008846. 10008846. 100088478. 100088478. 100088478. 100088478. 100088478. 10008907. 10008952. 1000979. 10009017. 17 10009085. 10009085. 10009145. 10009239. 10009244. 10009547. 10009548. 10009549. 10009548. 10009549. 10009551. 10009551. 10009753. 10009754. 10009753. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 1001032. 1001032. 1001032. 10010	
10008204. 10008492. 10008593. 10008811. 10008811. 1000881. 10008846. 10008878. 10008878. 10008870. 10008907. 10008952. 10009953. 10009017. 10009085. 10009266. 10009266. 10009541. 10009542. 10009548. 10009548. 10009548. 10009568. 10009568. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10010231. 10010231. 10010324. 10010337. 10010338. 200 10010343. 10010344. 20010345. 10010345. 10010345. 100103	
10008492. 10008594. 10008613. 21 10008816. 17 10008846. 17 10008878. 10008907. 10008907. 10008907. 10008952. 10009952. 10009953. 10009017. 10009017. 17 10009085. 10009088. 10009239. 16 10009246. 10009315. 10009547. 10009548. 10009548. 10009549. 10009549. 10009568. 10009581. 10009573. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 1001032. 10009754. 1001032. 10009754. 10009754. 10009754. 1001032. 1001032. 1001033. 1001032. 1001032. 1001032. 1001032. 10010337. 20 10010343. </td <td></td>	
10008593. 10008413. 10008811. 10008811. 10008878. 10008878. 10008878. 10008878. 10008952. 10008952. 1000907. 10009079. 10009085. 10009085. 10009088. 10009239. 10009246. 10009547. 10009547. 10009548. 10009547. 10009548. 10009548. 10009547. 10009548. 10009547. 10009548. 10009547. 10009548. 10009547. 10009547. 10009548. 10009549. 10009541. 10009551. 10009551. 10009754. 10009754. 10010241. 10010242. 1001032. 10010337. 10010343. 2010010344. <td< td=""><td>10008204</td></td<>	10008204
10008594. 21 10008811 21 10008814 17 10008846 17 10008878 10008953 10008952 10008955 10009017 17 10009085 10009085 10009085 10009266 10009266 10009246 1000951 10009547 10009524 10009548 10009551 10009568 10009581 10009753 10009753 10009754 10009754 10009754 10009754 10009774 1000987 1001987 10010231 1001033 10010332 1001033 10010334 20 10010335 20 10010343 20 10010344 20 10010345 20 10010344 20 10010345 20 10010345 20 10010345 20 10010344 20	
10008613 21 10008816 17 10008878 10008907 10008907 10008952 10008952 10009917 10009017 17 10009018 16 1000917 17 10009018 16 10009145 16 10009239 16 10009244 10009547 10009548 10009548 10009549 10009548 10009581 10009548 10009581 10009548 10009581 10009754 10009754 10009754 10009754 10009754 10009754 10009754 10009754 10009754 10009754 1001032 10010231 1001032 10010324 1001032 10010337 20 10010343 20 10010344 20 10010345 10010345 10010345 10010345 10010344 20	
10008613 21 10008816 17 10008878 10008907 10008907 10008952 10008952 10009917 10009017 17 10009018 16 1000917 17 10009018 16 10009145 16 10009239 16 10009244 10009547 10009548 10009548 10009549 10009548 10009581 10009548 10009581 10009548 10009581 10009754 10009754 10009754 10009754 10009754 10009754 10009754 10009754 10009754 10009754 1001032 10010231 1001032 10010324 1001032 10010337 20 10010343 20 10010344 20 10010345 10010345 10010345 10010345 10010344 20	
10008846. 17 10008878. 1000884. 1000884. 10008952. 10008952. 1000907. 10009017. 17 10009085. 10009085. 10009085. 1000929. 10009246. 10009246. 10009524. 10009547. 10009547. 10009548. 10009551. 10009581. 10009581. 10009582. 10009581. 10009753. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009779. 1000987. 1001032. 1001032. 1001033. 10010241. 1001032. 10010324. 20 10010337. 20 10010343. 20 10010344. 20 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 20 10011354. 20	
10008846. 17 10008878. 1000884. 1000884. 10008952. 10008952. 1000907. 10009017. 17 10009085. 10009085. 10009085. 1000929. 10009246. 10009246. 10009524. 10009547. 10009547. 10009548. 10009551. 10009581. 10009581. 10009582. 10009581. 10009753. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009779. 1000987. 1001032. 1001032. 1001033. 10010241. 1001032. 10010324. 20 10010337. 20 10010343. 20 10010344. 20 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 20 10011354. 20	
10008878. 10008907. 10008952. 10009017. 10009017. 10009017. 10009018. 10009085. 10009266. 10009246. 1000951. 10009548. 10009549. 10009548. 10009548. 10009548. 10009548. 10009551. 10009581. 10009582. 10009581. 10009753. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 1001021. 1001022. 1001032. 1001033. 1001032. 1001033. 10010334. 2010010344. 201010345. 10010345. 10010345. 10010345. 100	10008846
10008884. 10008752. 100098753. 10009079. 10009079. 10009085. 10009085. 10009085. 10009239. 10009246. 10009541. 10009542. 10009543. 10009544. 10009545. 10009547. 10009548. 10009551. 10009582. 10009753. 10009754. 10009754. 10009754. 10009779. 10009787. 10009787. 10009787. 10009787. 10009787. 10009787. 1001024. 1001024. 1001024. 1001032. 10010337. 10010343. 20010343. 20010344. 2010010345. 10010344. 201010345. 10010463. 100104643. 1001125. <td< td=""><td></td></td<>	
10008907	
10008952. 10009017. 17 10009085. 10009085. 10009085. 16 10009266. 10009315. 10009266. 10009381. 10009524. 10009551. 10009588. 10009554. 10009548. 10009554. 10009581. 10009582. 10009582. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 10009754. 1000987. 10009754. 1000987. 1000987. 21 1000987. 21 10010231. 1001032. 10010324. 20 10010337. 20 10010338. 20 10010343. 20 10010344. 20 10010345. 20 10010345. 21 10010345. 21 10010345.	
10008953. 1009017	
10009017 17 10009085 10009085 10009145 16 10009266 10009239 10009266 10009381 10009547 10009547 10009548 10009548 10009548 10009581 10009547 10009581 10009581 10009582 10009582 10009575 10009754 10009779 10009871 10009779 10009880 21 10009881 10010241 10010060 1001032 10010241 10010303 10010324 20 10010337 20 10010343 20 10010344 20 10010345 20 10010344 20 10010345 20 10010345 20 10010344 20 10010345 20 10010345 20 10010345 20 10010345 20	
10009079. 10009085. 10009145. 16 10009266. 10009315. 10009524. 10009524. 10009548. 10009547. 10009551. 10009582. 10009581. 10009582. 10009582. 10009576. 10009754. 10009754. 10009754. 10009754. 10009754. 10009779. 10009871. 21 10009880. 21 10009871. 21 10009873. 10010060. 10010231. 10010231. 10010231. 10010324. 10010324. 20 10010337. 20 10010343. 20 10010344. 20 10010345. 10010345. 10010345. 10010345. 10010345. 10010463. 10010355. 10010463. 10010364. 20 10010375. 10010463. 10010364. 20 10011255. 100	
10009085	
10009088. 16 10009239. 16 10009236. 16 10009315. 10009381. 10009547. 10009547. 10009548. 10009547. 10009549. 10009549. 10009551. 10009582. 10009549. 10009581. 10009541. 22 10009542. 10009582. 10009543. 10009753. 10009754. 10009779. 10009871. 10010060. 10010060. 10110241. 10010241. 10010231. 10010241. 1001032. 10010324. 20 10010337. 20 10010343. 20 10010344. 20 10010345. 10010344. 10010345. 10010344. 10010357. 10010401. 10010354. 1001054. 1001125. 10011264. 10011264. 21 1001127. 10011264. 10011286. 17	
10009145. 16 10009266. 10009315. 10009524. 10009524. 10009547. 10009548. 10009551. 10009568. 10009561. 22 10009551. 10009568. 10009551. 10009568. 10009551. 10009753. 10009754. 10009774. 1000980. 21 1000987. 10009880. 10010231. 10010241. 10010324. 10010332. 10010337. 20 10010338. 20 10010344. 20 10010344. 20 10010345. 10010345. 10010344. 20 10010345. 10010345. 10010344. 20 10010345. 10010345. 10010345. 10010461. 10010355. 10010461. 10010364. 20 10010364. 20 10010364. 21 10011255. 1001126.	
10009239. 10009266. 10009315. 10009547. 10009548. 10009549. 10009581. 10009581. 10009581. 10009581. 10009581. 10009581. 10009581. 10009581. 10009581. 10009581. 10009754. 10009753. 10009880. 10009871. 10009881. 10010231. 10010241. 10010324. 10010337. 10010338. 10010343. 10010344. 2010010344. 2010010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010463.	
10009266. 10009381. 10009547. 10009548. 10009549. 10009551. 10009582. 10009568. 10009574. 10009575. 10009575. 10009575. 10009754. 10009754. 10009754. 10009787. 10009787. 10009787. 10010241. 10010241. 10010241. 1001032. 10010343. 10010344. 20 10010344. 20 10010344. 20 10010344. 20 10010345. 10010346. 10010357. 10010345. 10010346. 10010463. 10010463. 10010464. 1001125. 10011264. 1001127. 10011286. 10011297. 10011298. <	
10009315	
10009381. 10009547. 10009548. 10009549. 10009581. 10009582. 10009581. 10009576. 10009753. 10009754. 10009754. 10009753. 10009754. 10009754. 10009754. 10009754. 10009753. 1000980. 10010981. 10010987. 10010981. 10010231. 10010324. 10010337. 10010343. 10010344. 2010010344. 2010010345. 10010345. 10010345. 10010345. 10010345. 10010401. 100104517. 10010454. 10010454. 1001199. 1001194. 10011954. 1001194. 10011954. 1001194. 1001197. 1001198. 1	
10009524. 10009547. 10009548. 10009551. 10009581. 10009582. 10009568. 10009561. 10009562. 10009563. 10009564. 10009561. 10009562. 10009563. 10009564. 10009753. 10009754. 10009754. 10009871. 10010860. 1001021. 10010221. 1001032. 1001032. 1001032. 10010337. 10010338. 20 10010343. 10010344. 20 10010345. 10010346. 10010357. 10010364. 10010354. 10010463. 10010517. 10010463. 1001194. 10011954. 10011954. 10011954. 10011191. 10011286.	
10009547. 10009548. 10009551. 10009581. 10009582. 10009581. 10009581. 10009581. 10009581. 10009581. 10009581. 10009581. 10009661. 10009753. 10009871. 10009880. 10010060. 10010060. 10010231. 10010241. 10010324. 10010337. 10010343. 10010344. 20 10010344. 20 10010355. 10010364. 10010355. 10010364. 10010354. 10010364. 10010401. 10010463. 1001125. 10011264. 1001127. 10011286. 10011286. 10011286. 10011286. 10011286. 10011286. 10011286.	
10009548. 10009551. 10009581. 10009582. 10009583. 10009582. 10009582. 10009583. 10009753. 10009754. 10009754. 10009754. 10009871. 10009880. 10010231. 10010231. 10010324. 10010332. 10010334. 10010343. 10010344. 10010345. 10010345. 10010345. 10010451. 10010355. 10010454. 10010454. 1001125. 10010454. 10011255. 10011264. 1001127. 10011286. 10011298. 10011298. 10011298. 10011298. 10011298. 10011294. 10011294. 10011294. 10011294. 10011294. 1	
10009549. 10009551. 10009581. 10009582. 10009676. 10009753. 10009779. 10009779. 1000980. 1001040. 1001021. 10010231. 1001032. 1001032. 10010333. 10010334. 10010343. 10010344. 10010345. 10010344. 10010355. 10010364. 10010355. 10010463. 10011345. 10011345. 10010354. 10010364. 10010355. 1001041. 1001125. 1001125. 1001125. 1001125. 1001125. 10011191. 1001125. 10011264. 1001127. 10011284. 10011296. 10011296. 10011296. 10011296. 10011296. <td></td>	
10009551. 10009581. 10009582. 10009616. 10009753. 10009754. 10009871. 10009880. 10010241. 10010241. 10010241. 1001032. 10010332. 10010332. 10010333. 10010343. 10010344. 10010345. 10010344. 10010357. 10010344. 10010354. 10010354. 10010401. 1001054. 1001125. 1001125. 1001125. 1001125. 1001125. 1001125. 1001125. 1001125. 1001125. 1001125. 10011264. 1001127. 10011286. 10011296. 10011296. 10011296. 10011296. 10011296. 10011296. 10011296. <td></td>	
10009568 10009581 10009661 22 10009753 22 10009754 22 10009754 21 10009871 21 10009880 21 10009871 21 10019880 21 10019881 20 10010231 10010231 10010324 10010332 10010337 20 10010338 20 10010343 20 10010344 20 10010345 20 10010344 20 10010355 10010401 10010364 20 10010355 10010401 10010463 10010517 10010555 10010854 10011120 21 1001127 21 10011286 21 10011298 10011286 10011298 10011298 10011296 10011298 10011286 17	
10009581 10009582 10009661 22 10009753 22 10009754 22 10009754 21 10009871 21 10009880 21 1001980 21 1001980 21 1001931 1001032 1001032 1001033 10010334 20 10010337 20 10010338 20 10010340 20 10010343 20 10010344 20 10010345 20 10010346 20 10010345 20 10010346 20 10010345 20 10010346 20 10010345 20 10010345 20 10010345 20 10010401 20 1001055 20 1001054 20 10011954 20 10011964 20	
10009582 10009646 22 10009753 22 10009754 20 10009754 21 10009871 21 10009860 21 1000987 21 10009880 21 10010241 21 10010241 21 1001032 20 10010343 20 10010340 20 10010343 20 10010344 20 10010345 20 100103464 20 10010355 20 10010364 20 10010355 20 10010463 20 10010517 20 10010454 20 1001125 20 10011191 21 10011192 20 10011193 20 10011194 20 100111954 20 10011194 21 10011296 20<	
10009661 22 10009753 2009753 10009754 2009753 10009779 2009871 10009880 21 10009871 21 10019871 21 10019873 21 10019880 21 10019871 21 10019880 21 10010231 1001024 10010324 10010332 10010337 20 10010338 20 10010343 20 10010344 20 10010345 20 10010344 20 10010355 10010461 10010364 10010517 10010854 10010991 10011054 1001190 10011191 21 10011256 10011286 10011264 21 10011275 10011286 10011286 1011286 10011298 10011241 10011298 10011243	
10009676. 10009753. 10009754. 10009860. 10009880. 10010987. 10010987. 10010231. 10010241. 1001032. 1001032. 1001032. 1001032. 1001032. 1001032. 1001032. 1001033. 1001034. 10010344. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010345. 10010401. 10010457. 10010463. 10010463. 1001121. 10011254. 10011264. 1001127. 10011286. 10011286. 10011286. 10011286. 10011286. 10011286. 10011286.<	
10009753. 10009754. 10009871. 10009880. 10010060. 10010231. 10010231. 1001032. 1001032. 10010332. 10010333. 10010334. 10010340. 10010343. 10010344. 10010345. 10010346. 10010357. 10010345. 10010354. 10010355. 10010463. 10010517. 10010517. 1001054. 10011125. 10011194. 100111954. 10011192. 10011191. 10011192. 10011191. 10011192. 10011192. 10011194. 10011256. 10011264. 1001127. 10011286. 10011296. 10011296. 10011296. 10011296. 10011296. 10	
10009754	
10009779. 1000980. 21 10009880. 21 1001060. 10010060. 1001032. 1001032. 1001032. 1001032. 1001032. 1001032. 1001032. 1001033. 10010324. 10010332. 10010337. 20 10010343. 20 10010344. 20 10010345. 10010345. 10010345. 10010345. 10010345. 10010463. 10010463. 10010463. 10010517. 10010463. 10010555. 10010854. 10011054. 1001199. 10011191. 10011194. 10011194. 21 10011286. 10011298. 10011298. 10011298. 10011296. 1001124. 100112662. 17 10012662. 17 10012643. 10012642.	
10009871	
10009880	
10009987. 1001066. 1001032. 1001033. 1001033. 10010324. 10010332. 10010324. 10010337. 10010338. 10010339. 10010343. 10010344. 10010345. 10010364. 10010364. 10010364. 10010364. 10010364. 10010364. 10010364. 10010455. 10010463. 10010517. 1001054. 10011054. 10011191. 10011194. 10011194. 1001125. 10011266. 1001127. 10011286. 10011298. 10011298. 10011296. 10011286. 10011286. 10011286. 10011286. 10011286. 10011286. 10011286. 10011286. 100112	
10010060	
10010132 10010231 10010241 10010303 10010324 10010337 10010337 10010338 20010339 20010343 20010343 20010344 20010345 100103464 10010364 10010364 10010401 10010463 10010454 10010555 1001854 10011955 1001191 10011191 10011192 10011255 10011266 1001127 10011286 10011298 10011296 10011298 10011298 10011298 10011298 10011298 10011298 10012566 17 10012643 10012643 10012643 10012643	
10010231 10010241 10010303 10010324 10010324 10010337 10010338 20010339 20010340 20010344 20010345 10010364 10010364 10010364 10010364 10010364 10010364 10010463 10010463 10010517 10010854 1001055 10010854 10011191 10011194 1001125 10011286 10011298 10011298 10011296 10011296 10011298 10011298 10011298 10011294 10011295 10011296 10011245	
10010241	
10010303. 10010324. 10010332. 10010337. 10010338. 20 10010339. 20 10010340. 20 10010343. 20 10010345. 10010344. 20 10010345. 10010346. 10010463. 10010463. 10010517. 10010854. 10010854. 1001195. 1001194. 10011191. 10011192. 10011194. 10011194. 1001125. 10011194. 1001125. 10011194. 10011194. 10011194. 10011275. 10011286. 10011296. 10011296. 10011296. 10011296. 10011296. 10011296. 10011296. 10011297. 10012562. 10012662. 10012643. <	
10010324	
10010332 10010337 10010338 2010010338 2010010340 2010010344 2010010345 10010345 10010345 10010345 10010345 10010345 10010345 10010345 10010375 10010401 10010454 10010557 10010545 10010555 10010554 10011054 10011054 10011190 10011191 10011191 10011286 10011298 10011298 10011264 10011255 10012566 10012662 10012643 10012643	
10010337	
10010338	
10010339 20 10010340 20 10010343 20 10010344 20 10010345 10010344 10010345 10010345 10010345 10010364 10010345 10010375 10010463 10010517 10010755 10010854 10011054 10011991 10011191 10011191 1001121 21 10011286 10011296 10011343 10011286 10011255 10012662 1001124 21 10011256 10012664 10011248 1001343 10011298 1001343 10011296 10012662 10012562 17 10012562 17 10012562 17 10012643 10012643	
10010340	
10010343	
10010344	
10010345	
10010364	
10010375	
10010401	
10010463	
10010517	
10010755. 10010854. 10011091. 10011125. 10011125. 10011191. 10011191. 1001121. 21 10011286. 10011286. 10011298. 10011566. 10011566. 10011566. 10012536. 10012643. 10012649.	
10010854	
10010991	
10011054	
10011125	
10011190	
10011191	
10011194	
10011211	
10011286	
10011296	
10011298	
10011343	
10011566 10011725	
10011725	
10012536	
10012562 10012643 10012699	
10012643 10012699	
10012699	
	10012643
10012708	

Contract of

(800) 364 9897 www.caymanchem.com